植物蛋白中抗逆机制检测方案(分子互作分析仪)

收藏
检测样品: 生物农业
检测项目: 表征
浏览次数: 158
发布时间: 2022-11-15
关联设备: 1种 查看全部
获取电话
留言咨询
方案下载

诺坦普科技(北京)有限公司

白金7年

解决方案总数: 31 方案总浏览次数:
方案详情
植物生长会受到各种复杂多变的逆境条件胁迫,包括干旱、盐碱和低温等。在长期的系统发育过程中,植物也逐渐形成适应、抵抗和忍耐的抗逆性,植物抗逆性机制为当前研究的热点,今天带大家来了解一下,微量热泳动(MicroScale Thermophoresis, MST)互作技术在植物适应逆境的机制研究的应用。

方案详情

方案标题:MST分子互作技术在植物抗逆机制研究上的应用检测样品:植物蛋白检测项目:植物蛋白和逆境相关分子应用领域: 生物方案摘要:植物生长会受到各种复杂多变的逆境条件胁迫,包括干旱、盐碱和低温等。在长期的系统发育过程中,植物也逐渐形成适应、抵抗和忍耐的抗逆性,植物抗逆性机制为当前研究的热点,今天带大家来了解一下,微量热泳动(MicroScale Thermophoresis, MST)互作技术在植物适应逆境的机制研究的应用方案详情: 高温胁迫_蛋白&蛋白互作。Chen, Si‐Ting, et al. "Identification of core subunits of photosystem II as action sites of HSP 21, which is activated by the GUN 5‐mediated retrograde pathway in Arabidopsis." The Plant Journal 89.6 (2017): 1106-1118. 前人研究发现位于叶绿体的热休克蛋白21(HSP21)能够保护光系统II复合体 (PSII),使其免受细胞内热和氧化应激,但其作用的分子机制尚不清楚。中科院植物生理生态研究所郭房庆研究团队发现,热应激下拟南芥HSP21被GUN5依赖的逆向信号通路激活,并直接结合其核心亚基D1和D2蛋白来稳定PSII。 组成性表达HSP21可以恢复热胁迫下PSII 的热敏稳定性和  gun5 突变体的功能缺失,表明 HSP21 是热胁迫条件下维持类囊体膜系统完整性的关键伴侣蛋白。研究人员借助MST技术直接在接近天然状态下的裂解液中检测了HSP21蛋白与PS II核心亚基D1和D2蛋白之间的亲和力。图注: MST技术检测HSP21和植物裂解液中D1/D2结合植物内某些蛋白较难纯化或者纯化后活性受影响,利用MST技术,可直接在植物裂解液内进行亲和力检测,无需纯化。在本次实验中,作者裂解表达35S::D1-eYFP或35S::D2-eYFP的转基因植物,直接向裂解液中加入梯度稀释的纯化HSP21蛋白,检测得到HSP21与D1/D2的亲和力Kd分别为0.67μM和1.32μM.低温胁迫:蛋白&离子Ding, Yanglin, et al. "CPK28-NLP7 module integrates cold-induced Ca2+ signal and transcriptional reprogramming in Arabidopsis." Science Advances 8.26 (2022): eabn7901.寒冷的环境中会触发植物细胞质Ca2+的激增,导致植物的转录重编程。然而,Ca2+信号是如何被感知和传递到下游的低温信号通路仍然是未知的。中国农业大学杨淑华/丁杨林团队研究发现,钙依赖性蛋白激酶28 (CPK28)启动了一个磷酸化级联,从而作用于低温诱导Ca2+信号下游的转录重编程。这项研究阐明了一种先前未知的机制,揭示了植物从质膜到细胞核的快速感知和转导低温信号的关键策略。研究中,作者通过MST实验检测到CPK28可直接与Ca2+结合。CPK28 EF-hand位点突变蛋白CPK28EFm与Ca2+亲和力降低了6倍,证明了EF-hand对结合Ca2+非常重要。图示:MST技术检测CPK28/CPK28EFm与Ca2+的亲和力淹水胁迫_蛋白&离子Lehmann, Julian, et al. "Acidosis-induced activation of anion channel SLAH3 in the flooding-related stress response of Arabidopsis." Current Biology 31.16 (2021): 3575-3585淹水胁迫导致厌氧菌引发的胞质酸中毒,使植物细胞感知酸性并通过膜去极化传递这种信号的分子机制尚不清晰。德国维尔茨堡大学研究表明,拟南芥根中酸中毒诱导的阴离子流出依赖于阴离子通道AtSLAH3,细胞质子浓度的增加使SLAH3从无功能二聚体转变为活性单体形式,激活了阴离子通道。研究发现硝酸盐对于pH依赖的通道激活至关重要,并通过MST技术研究SLAH3与NO3-的结合。图示:(左)淹水相关胁迫响应中酸中毒诱导的阴离子通道SLAH3的激活    (右)MST技术检测不同PH下SLAH3与NO3-亲和力。作者表达SLAH3-GFP融合蛋白作为荧光信号源,无需其他标记。在pH6.5下检测到SLAH3与NO3-相互作用的Kd为120±50 mM。在pH为7.3时,SLAH3仍与NO3-结合,但亲和力降低了60%,表明SLAH3与阴离子的结合依赖于pH。干旱胁迫——蛋白和磷脂分子Yang, Yongqing, et al. "Phosphatidylinositol 3-phosphate regulates SCAB1-mediated F-actin reorganization during stomatal closure in Arabidopsis." The Plant Cell 34.1 (2022): 477-494.为了应对干旱胁迫,植物关闭气孔以减少叶片蒸腾水分的损失。气孔运动受信号分子磷脂酰肌醇三磷酸(PI3P)的调控。然而,这一过程的分子机制尚不清楚。中国农业大学郭岩研究组研究表明,拟南芥气孔关闭过程中,PI3P通过与植物特异性肌动蛋白结合蛋白 (SCAB1) 结合,抑制其寡聚,从而调节气孔关闭期间保卫细胞中F-肌动蛋白稳定性和重排。为了检测SCAB1蛋白是否可与PI3P结合,作者进行MST实验,结果显示二者具有非常强的亲和力,解离常数Kd为4.5±0.09 pmol。为了确定具体结合位点,作者将PI3P motifs RXLR-dEER进行突变,MST结果显示,三重突变蛋白不能与PI3P结合。综合其他实验,最终证明,SCAB1的4个RXLR motifs均具有PI3P结合能力,且至少需要2个RXLR才能与PI3P结合。图示:MST检测SCAB1与PI3P的亲和力。氧化胁迫-蛋白&离子Zhou, Xin-Tong, et al. "Ectopic expression of SsPETE2, a plastocyanin from Suaeda salsa, improves plant tolerance to oxidative stress." Plant science 268 (2018): 1-10.质体蓝素(Plastocyanin)是一种I型含铜蛋白,存在于叶绿体类囊体中,越来越多的证据表明,植物质体蓝素参与了铜的稳态调节,但其生理相关性仍不明确。中科院微生物所夏桂先和仲乃琴团队发现了一个来自盐生碱蓬的质体蓝素基因(SsPETE2)具有抗氧化功能,该基因与铜螯合活性有关。作者通过MST实验发现SsPETE2可与铜离子结合,进而缓解H2O2的形成。此外,与过表达AtPETEs的植物相比,表达SsPETE2的植物对氧化胁迫表现出更强的耐受性,MST结果显示,SsPETE2比AtPETEs具有更强的铜结合活性。图示:MST检测SsPETE2、AtPETE1和AtPETE2与Cu2+的亲和力。总结:在抗逆机制研究中,常常涉及到蛋白和小分子,甚至是与离子的互作。MST技术在进行互作亲和力检测时,不依赖于分子量的变化,因此,即使是几十个道尔顿的离子和蛋白的亲和力也可以轻松胜任。此外,MST亲和力检测范围宽(pM-mM),可研究不同强度亲和力的互作,是植物抗逆研究中的一件利器。
确定

还剩2页未读,是否继续阅读?

不看了,直接下载
继续免费阅读全文

该文件无法预览

请直接下载查看

诺坦普科技(北京)有限公司为您提供《植物蛋白中抗逆机制检测方案(分子互作分析仪)》,该方案主要用于生物农业中表征检测,参考标准--,《植物蛋白中抗逆机制检测方案(分子互作分析仪)》用到的仪器有NanoTemper Monolith 生物分子互作检测仪