视频号
视频号
抖音号
抖音号
哔哩哔哩号
哔哩哔哩号
app
前沿资讯手机看

我要投稿

投稿请发送邮件至:weidy@instrument.com.cn

邮件标题请备注:投稿

联系电话:010-51654077-8129

复旦大学学士、美国约翰霍普金斯大学PhD,美国加州理工学院博士后,南开大学化学学院研究员,研究方向为分析化学、物理化学、科学仪器的智能制造等多学科综合交叉的科学技术问题

阅读TA的文章
二维码

我要投稿

投稿请发送邮件至:weidy@instrument.com.cn

邮件标题请备注:投稿

联系电话:010-51654077-8129

南开张新星团队JACS Au封面:质谱表征微液滴表面自发单电子氧化还原反应

进入
阅读更多内容

分享到微信朋友圈

打开微信,点击底部的“发现”,

使用“扫一扫”即可将网页分享到朋友圈。

分享: 2023/05/31 09:47:23
导读: 近几年与微液滴相关的纳微界面反应机制的研究吸引了大量的研究目光。多个研究证明电子的提供和捕获并非化学键的直接断裂,而是介导水微滴界面上氧化还原反应的关键决速步骤。

  近日,南开大学张新星研究员团队针对微液滴化学的独特性质,受邀总结了40余个单电子介导的水微液滴表面自发的氧化还原反应,并通过动力学研究,证明了电子的提供和捕获——而非化学键的直接断裂——是介导水微滴界面上氧化还原反应的关键决速步骤。该工作发表在了近期的JACS Au 杂志上,并被遴选为封面文章。

图片

  近几年与微液滴相关的纳微界面反应机制的研究吸引了大量的研究目光。在技术上,质谱作为微液滴反应的主要表征手段,一方面是由于其在分析化学反应中具有捕获短寿命自由基中间体、揭示化学反应机理等方面的天然优势,另一方面更是由于微液滴是一种可以直接喷雾进入质谱仪中进行检测的物质形式,导致质谱技术成为了近年来微液滴化学发展最简单、最重要、最主要的表征方法。

因此作者们在本文中列举了使用质谱方法学研究微液滴化学的优势和注意事项。此外,作者也在合成化学和大气化学的大背景下讨论了微液滴自发氧化还原能力的潜在影响。

首先,微液滴对反应的加速能力在有机合成中已经得到了广泛的认可,现有的部分微液滴化学研究已经实现了克级的合成。微液滴反应由于只需要将底物的水溶液喷洒成小水滴,无需催化剂、额外的能量输入、复杂的反应装置,完全符合绿色化学的特征,因此有望在合成化学中展现更多的潜力。其次,微液滴化学在大气化学方面也具有重要启示。大气的总体氧化还原能力决定了污染的生成、天气甚至气候的形成和变化。大气水,如云、雾和海洋飞沫,都是微米大小的微液滴。由于微液滴可以促进自发的氧化还原反应,文章建议在未来的大气研究中,也许可以将微液滴效应考虑进来。

在科学上,水对许多化学反应来说是一种惰性环境。然而,通过简单地将水喷洒成为微米尺寸的微液滴,就可以展现大量独特的性质,这些性质包括异常的pH值、反应物的统一取向和部分溶剂化、极高的反应速率以及极高的气液界面电场等。在微液滴的这些独特性质中,其强大的自发氧化还原能力尤其引人关注。

现有大量理论和实验研究表明,或由于界面双电层的形成,或由于大量水分子的自发统一取向,或由于水分子之间的部分电荷转移(H2O+---H2O-),在微液滴的气-液界面浅层可以自发产生极高的电场(约109 V/m)。该电场大到足以可以触发氢氧根或其他底物分子的单电子氧化过程,生成相应的自由基和一个电子(图1)。生成的电子还可以继而触发其他底物分子的单电子还原过程。

图片

  图1. 微液滴化学气-液界面处的氧化还原机制和质谱分析方法示意图

  图1展示了典型的微液滴化学质谱实验,并阐述了发生在微液滴表面的单电子介导的氧化还原机制。含有某种溶质的水溶液由注射泵强制推入极细的毛细管,高压氮气鞘气可将毛细管推出的液体分散成微液滴,由此产生的微液滴被喷向质谱仪的入口。以这种方式产生的微液滴的大小取决于鞘气的压力,范围在几到几十微米之间。在其表面上即可以自发发生大量的单电子的氧化还原过程。

  本文总结了40余个在水微液滴表面上发生的电子介导的氧化还原反应(表1、2),认为在水微液滴表面上电子的产生和捕获——而非化学键的直接断裂——是微液滴大多数氧化还原反应的关键决速步骤。

图片

  表1. 微液滴表面呈现单电子氧化过程的物种(电子供体)

图片

  表2. 微液滴表面呈现单电子还原过程的物种(电子受体)

  在单电子是微液滴表面氧化还原反应的载流子的前提下,OH-在微液滴上可以作为电子供体,如果在溶液中加入上述电子供体(表1中的分子),那么水微液滴上应该有更多的电子,在动力学上就应该可以加速电子受体的还原反应,进一步巩固电子确实是介导水微液滴上氧化还原反应的载流子的观点。

  为了验证这一假设,本文作者从表1中选择了三种电子供体:四硫富瓦烯(TTF)、羟甲基二茂铁(FM)、N,N,N’,N’-四甲基-1,4-苯二胺(TMPA),并将这三者分别和电子受体EV2+(乙基紫精二价阳离子)的水溶液喷洒成微液滴。其中图2a为喷洒纯EV2+溶液的质谱图,OH-是唯一的电子供体,EV2+转化为EV•+ (m/z = 214),m/z 150~200的峰是不稳定EV•+的降解产物。图2b−2d分别为喷撒TTF与EV2+、FM与EV2+、TMPA与EV2+的混合溶液的质谱图。在这些混合体系中,还原产物EV•+的强度明显增加,表明电子供体的加入加速了EV2+的还原。图2e展示了4个系统中EV•+/EV2+的相对强度的比较,清楚地显示了添加电子供体后还原产物增加了2到7倍。图2f−2h还显示了混合体系中氧化过程的加速动力学,TTF、FM和TMPA的氧化过程也应该随着EV2+的加入而加速。TTF•+、FM•+和TMPA•+自身的绝对质谱强度随着EV2+的加入增加了2倍左右。这些结果清楚地表明电子确实是介导水微滴上氧化还原反应的载流子,且简单的动力学研究证明了电子提供和电子捕获是两个相互加速的过程。而后续的进一步化学反应(如化学键的断裂和生成)在微液滴中成为了超快的非决速步骤。

  

图片

  图2. 微液滴单电子氧化还原过程的动力学研究

  南开大学研究生金水慧、陈欢、苑旭为本文并列第一作者;南开大学张新星研究员为本文通讯作者。本文被遴选为JACS Au杂志本期封面论文。

  原文:https://pubs.acs.org/doi/10.1021/jacsau.3c00191

  The Spontaneous Electron-Mediated Redox Processes on Sprayed Water Microdroplets Shuihui Jin,# Huan Chen,# Xu Yuan,# Dong Xing, Ruijing Wang, Lingling Zhao, Dongmei Zhang, Chu Gong, Chenghui Zhu, Xufeng Gao, Yeye Chen, and Xinxing Zhang*JACS Au, 2023, DOI: 10.1021/jacsau.3c00191

  张新星课题组网站:http://www.zxx-lab.com/

  


[来源:仪器信息网] 未经授权不得转载

用户头像

作者:南开大学张新星研究员

总阅读量 7645 查看ta的文章

网友评论  0
为您推荐 精选资讯 最新资讯 新闻专题

版权与免责声明:

① 凡本网注明"来源:仪器信息网"的所有作品,版权均属于仪器信息网,未经本网授权不得转载、摘编或利用其它方式使用。已获本网授权的作品,应在授权范围内使用,并注明"来源:仪器信息网"。违者本网将追究相关法律责任。

② 本网凡注明"来源:xxx(非本网)"的作品,均转载自其它媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责,且不承担此类作品侵权行为的直接责任及连带责任。如其他媒体、网站或个人从本网下载使用,必须保留本网注明的"稿件来源",并自负版权等法律责任。

③ 如涉及作品内容、版权等问题,请在作品发表之日起两周内与本网联系,否则视为默认仪器信息网有权转载。

使用积分打赏TA的文章

到积分加油站,赚取更多积分

谢谢您的赞赏,您的鼓励是我前进的动力~

打赏失败了~

评论成功+4积分

评论成功,积分获取达到限制

收藏成功
取消收藏成功
点赞成功
取消点赞成功

投票成功~

投票失败了~