您好,欢迎访问仪器信息网
注册
北京欧兰科技发展有限公司

关注

已关注

金牌17年 金牌

已认证

粉丝量 0

400-860-5168转1446

仪器信息网认证电话,请放心拨打

当前位置: 欧兰科技 > 解决方案 > 3D拉格朗日粒子追踪测速

3D拉格朗日粒子追踪测速

2023/04/10 15:26

阅读:112

分享:
应用领域:
航空航天
发布时间:
2023/04/10
检测样品:
航空
检测项目:
速度矢量场
浏览次数:
112
下载次数:
参考标准:

方案摘要:

在过去几十年中,已经发展出了多种基于粒子图像的体积流场测量技术,这些技术已经在流体力学的各种实验应用中展示了它们量化评估非定常流动性质的潜力。在这篇综述中,我们专注于3D基于粒子的测量的物理特性和环境,以及可以用于提高重建精度、空间和时间分辨率以及完整性的知识。我们关注的自然候选者是3D拉格朗日粒子跟踪(LPT),它允许在所研究的体积中确定位置、速度和加速度以及大量单个粒子轨迹。过去十年中,密集的3D LPT技术“Shake-The-Box”的出现开辟了更多的可能性,通过提供用于使用Navier-Stokes约束的强大数据同化技术的输入数据来表征非定常流动。因此,可以获得高分辨率的拉格朗日和欧拉数据,包括嵌入时间分辨的3D速度和压力场中的长粒子轨迹。

产品配置单:

分析仪器

Shake-the Box 高空间分辨体视粒子跟踪测速

型号: FlowMaster 4D-PTV

产地: 德国

品牌: LaVision GmbH

¥120万 - 150万

参考报价

联系电话

分析软件

LaVision DaVis 智能成像软件平台

型号: DaVis

产地: 德国

品牌: LaVision GmbH

¥10万 - 30万

参考报价

联系电话

方案详情:

拉格朗日粒子跟踪(LPT)是一种体积流量测量技术,能够在长时间内跟踪大量示踪粒子,即使在高度湍流的情况下也能做到。在本介绍中,我们从物理上说明这些技术及其相关性的重要性,介绍其一般原理,概述其历史发展,并描述了后处理方面的最新进展。这些主题的深入讨论在第2至4节中提供。我们在日常生活中遇到的大多数流动都是非定常、湍流和三维的。在自然界、空气动力学和许多相关的技术应用中达到的雷诺数通常远高于湍流发生的临界值。人类从字面上说是沉浸在非定常的流体流动现象中,从我们的血管和呼吸道中到各种交通工具内部和周围的流动、海洋中的洋流、大气湍流边界层(TBLs)以及封闭房间内的混合热对流。为了在各种应用和情况下充分利用流体流动,需要详细了解它们的拉格朗日和欧拉特性。湍流流动的主要特征是其动态能量转移机制,从大流动尺度向越来越小的(旋涡)流动尺度级联到耗散(Richardson 1922),并且随着雷诺数的增加而增加空间和时间尺度的分离,例如L/η ∼ Re3/4λ和TL/τη ∼ Re1/2λ(Toschi和Bodenschatz 2009;另请参见名为“湍流流动尺度”的侧栏)。根据局部速度梯度张量(VGT)(Chong等,1990),湍流流动结构可以定义为3D拓扑,即稳定或不稳定的鞍点或稳定或不稳定的节点,其在时间上改变形状和方向,同时随着整个流体流动(向下游)传导。另一方面,流动及其相干结构本身可以被理解和描述为几乎无限数量的流体元素的动态组成,这些元素沿着拉格朗日轨迹与局部流一起移动,并通过压力梯度和黏度与相邻元素耦合。在拉格朗日参考系中,这些流体元素正在进入和退出更持久的欧拉相干流结构,从而使它们保持活跃或导致它们的最终衰减。因此,流动拓扑可以在欧拉参考系(例如,通过VGT的Q和R不变量描述不可压缩流动),或者从拉格朗日视角作为与流体元素一起移动的拉格朗日相干结构(LCS)(Haller 2015)来定义。尽管如此,两个参考系都允许描述相同的流动,因为每个时间步长的拉格朗日和欧拉速度向量是相同的。

下载本篇解决方案:

资料文件名:
资料大小
下载
2023-3DLagrangianParticleTrackingFluidMechanics.pdf
14265KB
相关方案

在一个双稳湍流涡旋火焰中,对间歇性动态的时间-频率定位

本研究考察了一个双稳湍流旋转火焰中的复杂流场,其中火焰不规则地在离开的M形和附着的V形之间交替。流场由于火焰形状转换在不同的时间尺度上出现各种类型的间歇性动力学。为了正确识别、分离和时间上解析这些动态组分,通过将多维数据序列的最大重叠离散小波包变换(MODWPT)与常规瞬态POD相结合,开发了一种新的多分辨率proper orthogonal decomposition(MRPOD)方法。特别注意选择小波滤波器、分解水平和重构带宽以实现可变的频谱通带和足够的时间分辨率。当应用于双稳旋流火焰中高速三分量速度场测量的数据序列时,MRPOD能够隔离通常被合并为单个POD模式的频率组分,对于即使是弱的和高度间歇性的动力学,增强了空间/时间的一致性。由于改进的频谱纯度,一系列先前未知的动态被揭示出来,其中包括预旋涡核(PVC)和热声(TA)不稳定性等已被描述的不稳定性。特别是,在火焰形状转换期间,发现非周期切换模式只与先前确定的转移模式相耦合,在倒流和燃烧器进口附近产生显著的修改,这是一个已知会影响PVC增长率的区域。在M-V转换期间,TA振荡驱动反复的火焰再附着,最终稳定为V火焰。但是,持续高的TA振幅似乎并不一定预示着这种转换的开始。发现了PVC的更高阶谐波以及TA调制PVC动力学的证据,它们也表现出双峰行为:虽然保持其特征频率,但这些不稳定性在V-或M火焰期间才能发挥作用,且只能具有单螺旋或双螺旋结构。

能源/新能源

2023/04/10

Particle-laden Taylor-Couette流:高阶转变和径向局部波浪涡旋的证据

我们扩展了在中性浮力颗粒悬浮的Taylor-Couette流中已知的流动转换,通过在半径比η = 0.917和长径比Γ = 21.67的几何形状中访问更高的悬浮雷诺数(Resusp ∼ O(103))。通过流体可视化实验研究了几种颗粒体积分数(0 ≤ φ ≤ 0.40)下的流动转换,这些实验中流体由旋转的内缸驱动。尽管有效斜率更高,但我们观察到存在非对称的图案,例如旋涡,存在颗粒的情况下。我们实验的一项新发现是方位局部化的波动涡流,其特征在一些本来是轴对称的Taylor涡旋中存在波状。这种流动状态的存在表明,除了已经被确认的颗粒不稳定性效应外,它们还可以抑制不稳定性的增长。颗粒悬浮液中对应于高阶转换的流动拓扑似乎与单相流中观察到的拓扑相似。然而,一个关键区别是在更高颗粒负载下出现的第二个不协调频率的出现减少了,这可能对混沌的发生有影响。同时进行的扭矩测量使我们能够估计努塞尔数(Nuω)、Taylor数(Ta)和相对粘度(χe)之间的经验比例关系:Nuω∝Ta0.24χe 0.41。Ta的比例指数与颗粒负载无关。显然,颗粒不会触发在内外缸之间的角动量传递的性质上的定性变化。

航空航天

2023/04/10

7根杆束的流体-结构相互作用:用实验数据对比数值模拟

液体通过棒束中流动在许多核能应用中被观察到,例如在第四代液态金属快中子繁殖核反应堆(LMFBR)的堆芯中。该结构的一个主要特征是由于棒间子通道中速度差异而出现的棒间间隙中流动脉动。一方面,这些脉动是有益的,因为它们增强了棒和流体之间的热交换。另一方面,流体脉动可能引起柔性燃料棒的振动,这种机制通常称为流致振动(FIV)。随着时间的推移,这可能导致棒的机械疲劳和振动损伤,最终可能危及其结构完整性。在SESAME框架下,荷兰代尔夫特理工大学(TU Delft)、根特大学(UGent)和NRG合作开展了一项工作,旨在对7根棒束中的FIV进行实验测量,并将数值模拟与所获得的实验数据进行验证。由TU Delft进行的实验是通过一个P/D=1.11的七边形棒束进行重力驱动流动,其中200mm的中心棒段由硅胶制成,其中100mm是柔性的。采用激光多普勒测速仪(LDA)进行流量测量,而高速摄像机则测量了硅胶棒上诱导的振动。数值模拟采用了非稳态雷诺平均Navier-Stokes方程(URANS)方法进行湍流建模,并采用强耦合算法解决了流固耦合(FSI)问题。测得的流脉动频率以及平均棒位移和振动频率被用于进行基准测试。

能源/新能源

2023/04/10

使用高速激光诊断技术对旋流喷雾火焰中心涡核的实验研究。

中心级旋流燃烧可以有效地降低NOx排放。但是,这种复杂的燃烧场容易产生大规模的相干结构,例如旋转涡核和中心涡核(CVC)。本研究主要利用10 kHz高速CH化学发光(CL)、20 kHz颗粒图像测速仪(PIV)和CH2O平面激光诱导荧光(PLIF),在高温高压下研究中心级旋流喷雾燃烧器中CVC对流场和火焰的影响。对于试验火焰,CH CL和CH2O PLIF火焰都是三叉形状的,并且火焰动力学的中心部分表明了CVC结构。对于分层火焰,在燃烧器中心线附近的一个强旋涡带区域内存在CVC结构。适当正交分解(POD)模式的分析表明,CVC的运动主要是摆动,其次是进动。同时诊断表明,CVC的吸入导致CH2O从剪切层输送到燃烧器的中心区域。总体而言,CH2O信号主要分布在两个正的速度区域,即主燃气和中心涡核周围。利用CVC对自由基输运的作用是改善燃烧器混合,例如温度分布的潜在方法。

能源/新能源

2023/04/10

推荐产品
供应产品

北京欧兰科技发展有限公司

查看电话

沟通底价

提交后,商家将派代表为您专人服务

获取验证码

{{maxedution}}s后重新发送

获取多家报价,选型效率提升30%
提交留言
点击提交代表您同意 《用户服务协议》 《隐私政策》 且同意关注厂商展位
联系方式:

公司名称: 北京欧兰科技发展有限公司

公司地址: 北京市海淀区上地十街1号辉煌国际中心1号楼1006室 联系人: 李俊杰 邮编: 100085 联系电话: 400-860-5168转1446

仪器信息网APP

展位手机站