胚胎发育分析系统

仪器信息网胚胎发育分析系统专题为您提供2024年最新胚胎发育分析系统价格报价、厂家品牌的相关信息, 包括胚胎发育分析系统参数、型号等,不管是国产,还是进口品牌的胚胎发育分析系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合胚胎发育分析系统相关的耗材配件、试剂标物,还有胚胎发育分析系统相关的最新资讯、资料,以及胚胎发育分析系统相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

胚胎发育分析系统相关的厂商

  • 锶泰斯(上海)分析仪器有限公司致力于探索色谱样品特殊的前处理解决方案Explore Chromatography Sample Special preTreatment Solution锶泰斯(上海)分析仪器有限公司是一家集硬件开发与软件开发于一体的实验室智能化设备综合服务供应商。我司独立的机械设计、软件开发、销售与售后服务团队,具有丰富的软件与硬件开发及非标定制化经验, 目前基于CTC进样平台整合:天平、离心机、超声萃取、在线过滤、在线移液、涡旋混匀、加热振荡、磁力加热搅拌、自动分液识别模块、仪器状态手机APP追踪系统、液体进样、顶空、固相微萃取、箭形固相微萃取、动态顶空、吹扫捕集、热脱附、在线真空浓缩、在线GPC、在线SPE、QuEChERS、液质高通量进样、液质低残留进样等。兼容安捷伦/热电/岛津/PE/沃特世/布鲁克/天美/AB/LECO等主流品牌仪器。锶泰斯在样品前处理及自动化的领域努力钻研,累积了完备的专业知识与宝贵的解决经验。我们矢言在既有的基础上继续努力,以不负各界的厚爱,并期能为国内的科技服务提升,略尽绵薄之力!
    留言咨询
  • 上海北裕分析仪器股份有限公司为国家高新技术企业,2016年于全国性资本市场“ 新三板” 挂牌上市(股票代码838239)。公司位于上海市宝山区沪太路4288号,生产经营面积超5000平方米。北裕仪器先后通过ISO9001质量管理体系认证、14001环境管理体系认证、OHSAS18001职业健康安全管理等体系认证,公司坚持“诚信优质、大气进取、创新专注”的理念,努力向着国内一流的高科技制造企业大步迈进。北裕仪器10余年的发展历程中,获得了国家和地方政府的大力支持和诸多荣誉。公司先后获得国家税务总局“ 纳税A级”、科技部“科技型中小企业技术创新基金”、上海市“ 专精特新”认定、“ 3A信用等级”、 “重合同、守信用单位”、 “上海市和谐劳动关系达标企业”、 “上海市厂务公开民主管理先进单位”、“上海市模范集体”、 “上海市工人先锋号”、“最具成长潜力企业”等评定或荣誉;公司创始人入选中组部“万人计划”(国家高层次人才特殊支持计划)、科技部“创新创业人才推进计划”。北裕仪器主要从事大型精密分析仪器的研发、制造和销售等,公司主营产品为自动化检测仪器、机器人智能分析仪器、前处理设备和智慧无人实验室系统等四大系列,涵盖高端气相分子吸收光谱仪、全自动高锰酸盐指数分析仪、全自动CODcr分析仪、机器人智能分析仪、自动滴定仪、机器人多参数分析仪、便携式抽滤器、便携式离心机、柱状采样器等。公司多项产品被认定为上海市“高新技术成果转化”项目,入选全国工商联《军民两用高新技术民营企业及产品推荐目录》(第八册)和《上海市创新产品目录》。在细分仪器领域,技术优势明显,持续领先行业水平,产品荣获上海市“优秀发明金奖”,系列产品覆盖了超过80%的省级监测中心。北裕仪器非常重视自主创新和技术开发,产品开发时坚持“做别人没有做过的、做别人没有做好的”的基本原则,坚持做细分产品行业的龙头。目前公司拥有100余项具有完全自主知识产权的各类专利、软件著作权及独创技术等。北裕仪器高度重视国家标准的建立,成立以来多次参与国家或者地方标准的制定,如多项JJF国家标准,该类标准为相关产品在监测机构的使用,提供了计量鉴定的依据,对细分行业发展影响深远。公司参与制定多项团体标准,如《水质 高锰酸盐指数的测定》、《光谱法水质在线快速检测系统》等,为新产品的应用制定标准依据,为行业发展贡献企业自身力量。北裕仪器用技术创新引领企业发展,坚持走“智能制造+优质服务”的发展之路。以高度的责任感和使命感切实履行好企业的社会职责,为行业可持续发展贡献智慧和力量。
  • 广州分析测试中心科力技术开发公司(简称“中广测科力”)成立于1993年,是中国广州分析测试中心/广东省测试分析研究所(简称"中广测")下属企业,依托中广测的技术实力和研发能力,主要从事标准物质的销售服务、分析仪器的研制开发和进出口的代理业务。中广测科力从2002年开始代理销售国家标准物质,是国内最早从事标准物质销售和技术服务的企业之一,也是国内全面和综合的标准物质和标准样品的专业供应商之一,有着大型标准物质仓库,专业的销售和技术团队。我们有自主研发天然产物对照品和中药化学对照品,同时代理销售国产和进口几十万种标准物质和标准样品,业务遍及国内各省市检测机构、科研院校和工厂企业,在广大用户中有着良好的信誉。 华南标准物质网创办于2008年,由中广测科力主办,是华南地区大型全面的标准物质和标准样品的产品信息服务平台,集国内外众多品牌的标准物质和标准样品综合产品网站,为全国各地实验室、检测机构、科研院所、高校和工厂企业提供优质产品和售后服务。 中广测科力北京办事处于2016年2月在北京设立,是一家集销售服务和采购物流一体化的分支机构,秉承着中广测科力“服务科研、争创优质、团结进取、创造价值”的企业文化,借助中广测科力的技术优势和华南标准物质网的信息优势,为中国北方地区的客户提供一站式的优质产品和专业服务。 中广测科力具备强大的分析测试、技术开发、销售服务、物流管理和售后技术支持和人员培训能力,以深厚的专业背景和完善的服务体系,为广大用户提供从实验室设计、技术咨询、仪器选型、设备采购、人员培训到售后技术支持的一站式服务。
    留言咨询

胚胎发育分析系统相关的仪器

  • [ 产品简介 ]蔡司全自动数字玻片扫描系统Axioscan 7,兼顾扫描性能与应用自由度,以可靠、可重复的方式创建高质量的数字化玻片数据。平场复消色差物镜保证极高的图像质量。高速数字化、出色的图像质量以及多种成像模式,都可在全自动且易于操作的系统中实现。在生命科学研究实验室,公共成像平台和药物研究中,自动而可靠对玻片进行高质量数字显微成像的需求不断增长。蔡司Axioscan 7通过将持续的高速扫描和简单的操作与针对不同应用领域的个性化选项相结合,满足多种应用领域对可靠的长时间扫描性能以及高品质成像质量的需求。[ 产品特点 ]&bull 自动几何校准、色差校准,提供可重复实验结果&bull 具有明场、荧光、偏光等多种成像方式&bull 全新明场反差成像模式更全面展现样品特征&bull 最多9个通道荧光高速高质量图像,提供高效多色荧光成像解决方案&bull 自动化操作流程[ 应用领域 ]&bull 病理学,如阿尔茨海默氏症&bull 肿瘤免疫研究,如肿瘤微环境&bull 神经生物学,如细胞损伤测定&bull 药理学,鉴别药物激活底物筛选靶标&bull 发育生物学,如胚胎发育观察等生命科学领域研究小鼠肾脏伤口愈合实验,天狼星红染色。样品由Evotec的Alexander Lomow提供。来自克罗恩氏病患者的结肠样品,使用20× NA 0.8物镜成像。绿色:上皮簇状细胞(肠道感觉细胞)和固有层结缔组织细胞中的Cox -1。红色:CD 163——一种巨噬细胞标记物。经UltiMapper I/O PD-L1试剂盒染色的NSCLC组织。
    留言咨询
  • [ 产品简介 ]蔡司推出的全新Lightsheet 7激光片层扫描显微系统,助您高效便捷地实现活体和透明化样品的多视角成像。全新设计的物镜能够精确匹配透明化样品的折射率,从厘米大尺寸的样品,到多维时空的活体成像,无论是观察长达数天的生物发育过程,还是捕捉快速运动的血流心跳,都能助您游刃有余完成。同时,无需频繁更换物镜和样品仓,“傻瓜式”上样为您解放双手,提升效率,在简单调焦中实现理想光切。无需再为制备样品而烦恼,无需再为繁琐操作而困扰,让蔡司的Lightsheet 7系统,以简便轻松的方式带您洞悉生物世界。[ 产品特点 ]&bull 成像更深、速度更快、极低的光损伤&bull 适用于不同透明化制样&bull 全新样品定位方法创建多视角 (Multiview)数据,灵活的观察视野&bull 高灵敏度,高信噪比&bull 专利扫描技术获得高质量图像[ 应用领域 ]&bull 发育生物学:胚胎发育、器官发育等动态过程快速成像&bull 大型固定样品结构成像&bull 不同透明化样品成像&bull 三维细胞培养&bull 植物学等生命科学领域研究拟南芥花的发育图像-样品:图片由捷克共和国布尔诺市马萨里克大学中欧技术研究院(CEITEC)的S. Valuchova、P. Mikulkova和K. Riha提供。用改良的iDISCO 方法对Thy1-EGFP 标记的鼠脑进行透明化处理,在高折射率溶液(RI=1.56)中用Fluar 2.5x/0.12 物镜进行成像。样品由美国加州大学欧文分校的S. Gandhi 和TranslucenceBiosystems 公司提供。神经元类器官成像,像素尺寸:222 x 222 x 567 nm。图像体积:1.66 x 0.66 x 1.6 mm。样品由奥地利维也纳市分子生物技术研究所的D. Reumann 和J. Knoblich 提供。
    留言咨询
  • 产品简介蔡司晶格光切超高分辨率显微镜Lattice SIM 3利用晶格结构光照明的组织穿透力强的优势,针对组织样品对于分辨率、速度和灵敏度的三重需求进行光学设计,适用于细胞团、类器官、组织切片和小型模式动物等样品的超高分辨率成像,快速获取更精细的组织三维结构全貌,兼顾分辨率、成像速度、成像深度和灵敏度。产品特点&bull 低倍物镜下的大视野超高分辨率成像&bull 近各向同性分辨率的高质量光学切片&bull 以宽场成像的快速和低光毒性实现超高分辨率成像应用领域&bull 类器官发育&bull 组织切片&bull 3D细胞培养模型&bull 胚胎发育应用案例细胞球状体样品,利用25x物镜进行Lattice SIM成像,绿色标记线粒体 (MitoTracker Green),红色标记细胞核(NucRed Live 647)。果蝇胚胎 Fasciclin II (颜色深度编码) 和HRP (青色) 标记神经系统,样品来自英国约克大学Ines Hahn
    留言咨询

胚胎发育分析系统相关的资讯

  • 干细胞模型再现人类胚胎早期发育
    据英国《自然》杂志2日发表的一项研究,科学家用人多能干细胞建立了一个模型,可用来研究人类胚胎植入子宫的过程。人胚状体(blastoid)是模拟早期人类胚胎的结构,在研究中能准确再现人类胚胎早期发育的关键阶段,包括黏附在体外子宫细胞上。该模型或有助于推进我们对人类发育早期阶段的认识,以及开发不孕不育的治疗方法或避孕药。  在受精后的一周内,人类胚胎会形成名为胚泡的细胞团,胚泡会植入子宫壁。准确模拟这一发育阶段的模型能支持对胚胎植入和早期发育的研究。利用干细胞构建胚泡的类似物是一种很有前景的方法,但此前的尝试遇到了瓶颈,比如会形成与胚泡不匹配的细胞。  此次,奥地利科学院分子生物技术研究所研究人员尼古拉斯利弗隆及其同事,利用人多能干细胞构建了人胚泡样结构(胚状体)。研究团队鉴定出3个信号通路,抑制它们就能得到有效模拟正常胚泡发育(成功率70%)和能形成正确细胞(成功率97%)的胚状体。  研究报告称,这种人胚状体能在体外特异性地黏附受激素刺激的子宫内膜细胞,让团队能重现直到第13天的围植入期发育过程。  由于该模型效率高、可扩展潜力大。研究人员认为,这种方法能为人类胚胎植入和发育研究提供重要帮助。  干细胞可揭示器官的形成机理,但此前这方面的研究,一直难以帮助我们更深入理解发育胚胎。通常来说,科学家试图培养本身没有干细胞的类器官时,都会用到多能干细胞这种更基本的干细胞类型。科学家既可以从人体胚胎中获得多能干细胞,也可将皮肤细胞或血细胞进行重编程进而培养出干细胞,然后诱导它们模仿特定器官的形成。  不过,这些结构或者说微型器官,通常只复制了真实器官的某些结构和功能而非全部。
  • 人类发育早期阶段可“透视”
    据英国《自然》杂志近日发表的一篇胚胎学论文,英国科学家团队对一个处于原肠胚形成阶段的人类胚胎,进行了详细的细胞和分子研究。原肠胚形成是人类发育早期的一个重要事件,这一阶段对人类发育至关重要,但有时很难研究。研究结果带来了对此的独特认知。  原肠胚形成是人类发育早期阶段的一个决定性时刻。这个过程从受精后14天左右开始,持续约一周左右。人们目前对人类原肠胚形成的理解基本局限于实验模型,无法直接对其开展研究,因为这个阶段的人类胚胎很难获得,部分原因是国际指南之前将培养人类胚胎的时限控制在受精后的14天内。  英国牛津大学科学家山卡尔思林尼瓦斯及其同事,此次分析了一个在自愿终止妊娠后被捐赠用于研究的人类胚胎,该胚胎所处的阶段相当于受精后的第16至19天。作者对胚胎中的细胞类型和这些细胞表达的基因进行了详细的描述,并与实验模型进行了对比。研究团队检测到原始生殖细胞(成为卵子或精子细胞的干细胞)和红细胞等等。他们还发现,神经系统的细胞特化在这个发育阶段尚未开始。  虽然此次只研究了一个胚胎,但研究结果为其他模型系统的实验解读提供了新的背景。研究人员总结指出,这些数据还为人类原肠胚形成这一此前未经探索的人类胚胎发育基本阶段提供了独特认知。
  • Nature:触发早期胚胎形成的初始分子机制
    Nature:触发早期胚胎形成的初始分子机制2013-11-21 来源:生物360 作者:koo 61 0 收藏(0) 添加到书签-- 任何一名高中生物学新生对于怀孕的基本特征来说都是熟悉的,然而迄今为止,科学家们尚未发现触发发育中的胚胎形成的一连串事件的初始分子机制。现在,来自耶鲁大学医学院(Yale University School of Medicine)的的遗传学家们在《自然》(Nature)杂志上报告称,他们鉴定出这样的一种生命触发器,就好比是&ldquo 推倒第一个多米诺骨牌让其他的骨牌也跟着倒下的手指,从而启动胚胎产生&rdquo 。一个世纪以来,科学家们就已经知道母体提供一套遗传指令来驱动早期胚胎发生。这一套临时的母体指令有助引导胚胎如何读取它的基因组。然而,让母体停止对发育初期的胚胎发育进行控制的指令仍然未被发现。在这项最新研究中,研究人员以斑马鱼为研究对象,测量了在这些指令中,从受精时到对胚胎发育的控制转移到胚胎时这一段时间(就斑马鱼而言,大约3小时;就人而言,大约为24小时)内哪些指令被最频繁地读取。他们发现,三种蛋白因子--- Nanog、Pou5f1(也被称作 Oct4)和 SoxB1 具有最高的活性,确实是推动生命多米诺骨牌运转起来所必需的。令研究人员吃惊的是,这些因子与让人成体细胞经历重编程过程而转化为诱导性多能干细胞(induced pluripotent stem cells, iPSCs)所需的蛋白因子相同。研究人员表示,这些因子是成体细胞的青春之源,有助人们理解生命形成中的第一个多米诺骨牌是如何被&ldquo 推倒&rdquo 的。

胚胎发育分析系统相关的方案

  • SCIENCE ADVANCES:单细胞Western揭秘胚胎发育异质性
    美国加利福尼亚大学伯克利分校的科学家,利用单细胞Western技术在期刊SCIENCE ADVANCES(IF:12.804)发表文章:Assessing heterogeneity among single embryos and single blastomeres using open microfluidic design, Sci. Adv. 2020 6: eaay1751 22 April 2020. 本文利用单细胞Western技术与现有的工作流程整合在一起,为评估植入前胚胎发育固有的细胞间分子异质性开辟了新途径。
  • 胚胎显微操作-胚胎分割
    胚胎显微操作-胚胎分割 (一)概况 胚胎分割是通过对胚胎进行显微操作,人工制造同卵双生或同卵多生的技术,它是扩大胚胎来源的一条重要途径,其理论依据是早期胚胎的每一个卵裂球都具有独立发育成个体的全能性。 本世纪三十年代,Pinrus等首次证明兔2细胞胚的单个卵裂球在体内可发育成体积较小的胚泡。之后,Tarkowski等人的实验胚胎学研究成果进一步证明了哺乳动物2细胞胚的每一个卵裂球都具有发育成正常胎儿的全能性。七十年代以来,随着胚胎培养和移植技术的发展和完善,哺乳动物胚胎分割取得了突破性进展。Mullen等于1970年二分2细胞期鼠胚,通过体外培养及移植等程序,获得了小鼠同卵双生后代。Willadsen于1979年通过分离早期胚胎的卵裂球,成功地获得了绵羊的同卵双生后代。国内张涌等通过分割小鼠、山羊早期胚胎,均获得了同卵双生后代。进一步研究表明,四分胚,八分胚也可以发育成新个体。窦忠英等将7日龄的牛胚胎一分为四,实现了同卵三生。值得说明的是,随着胚胎分割次数的增多,分割胚的发育能力明显降低,这可能与胞质的不断减少有关。 (二)分割方法 胚胎分割方法主要有显微操作仪分割和徒手分割两种。
  • 如何在现代辅助生殖技术(ART)实验室培养中避免挥发性有机化合物
    一般来说,在进行所需培养程序时,通过最小化配子和胚胎在孵化箱外的时间长度和孵化箱开口数量来优化培养环境。然而,即使是短暂的外部环境暴露也可能导致诸如细菌、霉菌和毒素等危害,从而影响配子生物学、胚胎发育或两者兼而有之。可以通过过滤培养基或空气、在培养基中使用抗生素以及在空气净化系统中进行紫外线光氧化来避免细菌和霉菌。然而,在实验室中暴露于毒素,尤其是VOCs的情况相当普遍,并且被怀疑最早在实验室开始培养时被污染,有可能直到将胚胎植入子宫后才影响胚胎发育。对于其他哺乳动物来说,培养环境可以影响胚胎在培养期间的外观,以及胚胎在培养期之后的表现。

胚胎发育分析系统相关的资料

胚胎发育分析系统相关的论坛

  • 新显微镜可追踪胚胎发育单细胞分裂过程 有助于理解一个单细胞怎样变成了复杂的组织

    中国科技网讯 从一个受精卵发育成多种功能的胚胎,细胞要经过上千次分裂和复杂的排列重组。据物理学家组织网6月3日报道,霍华德·休斯医学研究院珍妮莉娅法姆研究学院开发出一种最新的成像技术,能以前所未有的速度和精确度看到这一过程,让人们能追踪胚胎成形时每个细胞在几天甚至几小时内的变化。相关论文发表在6月3日出版的《自然·方法学》上。 研究人员演示了一段约20小时的果蝇胚胎发育视频。在视频中,生物结构逐渐出现,从一小团简单的细胞簇慢慢变长,变成上万个细胞紧紧挤在一起的拉长的小胚胎,然后在新形成的肌肉收缩舒张下开始颤动,此时胚胎仅有半毫米长。此外,论文中还有一段果蝇胚胎中枢神经系统完整的发育视频,跟踪了单个细胞发育出感觉器官、脑叶及其他结构的过程,由于分辨率足够高,还能看到神经轴突尖端迅速变化。 发明该技术的珍妮莉娅法姆研究学院的菲利普·凯勒说,要理解一个单细胞怎样变成了复杂的组织,真实看到这一过程非常重要。传统光学显微镜速度太慢,无法跟踪细胞在生命初期的迅速变化,也容易破坏一个活胚胎,只能通过把多阶段、多组织的照片拼在一起,才能推测发生的变化,但“细胞分裂重组每次都不一样,这种观察方法可能会产生误导”。 新技术基于一种高速非侵入式光学显微镜,称为SiMView光层显微镜,能从4个角度同时拍摄图像,不仅能跟踪细胞运动,还能对发展过程进行数量分析。该显微镜由凯勒小组和德国的欧洲分子生物实验室合作开发,攻克了传统光学显微镜的两个难题:一是光源对样本造成的伤害,二是对海量数据进行处理分析。 大部分光源都会伤害细胞,使其中的荧光标记消失。研究小组设计的照明技术是一种激光扫描层,一次照射样本极薄的一层以减少伤害,由探测仪记录下被照亮的部分。光层来自两个相反方向,并用两个探测仪来探测荧光,照明与探测相结合,提供了4个不同的观察角度。不仅能避免由于光散射而造成的模糊,还将图像采集速度提高了50倍。 要让照亮样本和探测荧光在时间、位置上协调一致,时机吻合极为重要,光层交叉通过会造成图像模糊,发光间隔仅几毫秒。为了保持精度,SiMView还安装了实时调节的电子系统。 显微镜每秒会收集350Mb的数据,一个样本一天要产生海量数据,而不同条件或不同基因的发育对比实验,所要求的数据比这还要多好多倍。为此,研究人员开发出一种新的计算方法,能识别并跟踪显微镜视频中单个细胞并自动分析。这些都构成了拍摄活样本这一完整技术框架的必要组成部分。 凯勒表示,他们还将继续改进显微镜使计算过程更加有效。今后不仅能追踪胚胎中细胞的一代代世系,还可能控制发育以探索发育机制,并研究其他更大更复杂样本的发育过程。(常丽君) 《科技日报》(2012-06-05 二版)

  • 挑战人类生殖: 用干细胞制造胚胎

    自去年10月开始,分子生物学家Katsuhiko Hayashi就陆陆续续收到了许多夫妻的邮件,这些夫妻大多人到中年,仍然在为了一件事情焦急:要一个孩子。其中有一位英国的更年期妇女,希望到他位于日本京都大学的实验室,在他的帮助下怀上孩子,她写道:“这是我唯一的愿望。”这些请求开始于Hayashi一篇文章的发表——他原以为只有发育生物学家才会对他的实验结果感兴趣。在体外条件下,利用小鼠的皮肤细胞创造可以发育成精子和卵子的原始生殖细胞(PGCs)。为了证明这些实验室培养的原始生殖细胞与自然发育而成的原始生殖细胞类似,他利用它们生成了卵子,进而创造小鼠生命。他表示,这个创造出来的小鼠生命仅仅是他研究的一个“副产品”,他的研究将意味着更多——利用不孕妇女的皮肤细胞为她们提供可受精的卵细胞。与此同时他还提出,男性的皮肤细胞也可以用来创造卵子,同样,女性的皮肤细胞也可以生成精子。(事实上,研究结果发表后,许多同性恋发邮件给Hayashi ,索要更多的信息。)尽管这是一项创新研究,但是公众的广泛关注还是令Hayashi和他的教授Mitinori Saitou感到非常惊讶。他们花了十多年不断挖掘哺乳动物配子产生的微妙细节,然后在体外条件下重新创建该过程——一切都是为了科研,而非医疗。现在他们的方法使研究人员能够创建无限的原始生殖细胞,这种在以前很难获得的珍贵细胞的正常供应有助于推动哺乳动物生殖研究。但是,当他们将这个科学挑战自小鼠到猴子,再到人类推进时,这一过程被公众定义为治疗不孕不育的过程,于是相关的道德争议随之出现。“毫无疑问,他们在小鼠身上给这一领域带来了重大的改变,” 洛杉矶加州大学的生育专家Amander Clark说,“但是,在这项技术展示它的实用性之前,我们必须讨论一下使用这种方式创造配子的伦理问题。”回到最初在小鼠体内,胚胎发育一周后,便出现约40个左右的原始生殖细胞。这个小小的细胞团进而在雌性小鼠体内形成成千上万的卵细胞,在雄性小鼠体内每天都能生成几百万个精细胞,并能够遗传小鼠的全套遗传信息。Saitou想要了解在这些细胞发育过程中受到了那些信号的控制。在过去的十年中,Saitou已经通过辛苦研究确定了几个基因——包括Stella, Blimp1 和Prdm14 ——这些基因的某种组合在某些时候对于PGCs的发育起到了至关重要的作用。利用这些基因作为标记,可以从其他细胞中筛选原始生殖细胞以观察这些细胞的变化。2009年,在日本神户的RIKEN发育生物学中心,他发现,当培养条件适当时,在精确的时间加入骨形态发生蛋白4(BMP4),可以胚胎干细胞转化为原始生殖细胞的。为了验证这一发现,他向胚胎干细胞提供高浓度的BMP4,结果显示,几乎所有的胚胎干细胞都变成了PGCs。他和科学家们都预计这一过程非常复杂。http://www.ibioo.com/data/attachment/portal/201308/25/095620gaqefeejnqejxuu3.jpg人造小鼠生殖细胞产生小鼠胚胎的过程(点击图片查看大图)Saitou的方法严格遵循了自然过程,这与其他从事类似研究的人形成了鲜明的对比,以色列魏茨曼科学研究所的干细胞专家Jacob Hanna说。许多科学家尝试通过信号分子轰击干细胞在体外创造特定类型的细胞,然后筛选细胞混合物得到他们想要的细胞。但是他们忽略了这些细胞的自然形成过程和这些人造细胞与自然形成细胞的相似程度。Saitou找出了形成生殖细胞所需的条件,去除多余的信号干扰并将每个过程的时间精确控制,给他的同事们留下了深刻的印象。英国谢菲尔德大学的干细胞生物学家Harry Moore将这种生殖细胞发育的精确重现视为一场“胜利”。到了2009年, Saitou在小鼠生殖细胞出现之前从外胚层取了一些细胞,这成了研究的起点。但是想要真正掌握这个过程中,Saitou希望从细胞培养开始。当时正值Hayashi从英国剑桥大学回到日本,和Saitou一样,Hayashi在该领域先驱Azim Surani英国的实验室里完成了4年的研究。Surani盛赞这两位科学家说,他们的“气质、风格和解决问题的方法能够相互补充”。 Saitou “处理事情时很有系统性、完成目标一心一意”,而Hayashi“工作时更有直觉、视角更广阔、处理问题方法相对更加宽松”,他说。“他们确实形成了一个非常强大的团队。”Hayashi加入了Saitou京都大学的团队,他很快就发现,那里不同于剑桥。在京都大学,Hayashi用在理论讨论上的时间比曾经少得多,而更多的时间都花在实验上。他说“在日本,我们只管‘做’,这有时是非常低效的,但有时又酝酿着巨大的成功”。Hayashi同样以外胚层细胞作为起点,但与Saitou不同的是,他试图培养一个能够产生原始生殖细胞的稳定细胞系。可惜这种方法没有奏效。Hayashi借鉴其他研究结果——一个关键调控分子(activin A)和生长因子(bFGF)可以将培养的早期胚胎干细胞转化成类似于外胚层细胞的细胞类型。这引发了Hayashi将这两个因素结合起来的想法,诱导胚胎干细胞分化为外胚层,然后采用Saitou之前的方法把这些细胞成为的PGCs。通过这种新的方法,他最终获得了成功。为了证明这些人造的原始生殖细胞是真实的拷贝,他们必须证明这些细胞可以进一步发育成精子和卵子。这一进程是非常复杂和难以理解的。所以研究小组将这一工作留给了自然——Hayashi将PGCs植入无法产生精子的小鼠的睾丸,观察这些细胞是否会发育。Saitou认为,这是可行的,但还是感到有些担忧。当实验进行到第3或4只小鼠时,他们发现小鼠的输精管里充满了精子。“这一切都发生得恰如其分,我知道他们会产生幼仔,”Hayashi说。研究小组将这些精子注入卵细胞中并植入雌性小鼠的胚胎,结果产生了大量的雌性和雄性后代。他们利用诱导多能干细胞(iPS)进行反复的实验,成熟的细胞被重新编程为胚胎状态。此外,精子被用于生产幼仔,证明它们具有基本功能——这是干细胞分化领域的罕见成就。Clark说:“这是整个多能性干细胞研究领域里在培养皿中生成全功能细胞类型少有的成功案例之一。”他们预计形成卵细胞更复杂,但是在去年,Hayashi在体外条件下制作有正常着色的原始生殖细胞并转入白化小鼠的卵巢,将产生的卵细胞体外受精后植入代孕。当透过幼崽半透明的眼睑看到黑色的眼睛时,他知道这一切又成功了。生殖细胞的回馈目前,许多研究人员已经能够复制验室培养原始生殖细胞的过程。人造原始生殖细胞特定用于表观遗传学研究:通过修饰DNA确定哪些基因表达。最常见的修饰就是为DNA碱基加上甲基,这些修饰在有些情况下,能够反映生物所经历的历史过程。与其它类型的细胞类似,表观遗传标记改变了原始生殖细胞在胚胎发育过程中的命运,但原始生殖细胞有个与众不同的特点,就是当它们发育成精子和卵子后,表观遗传标记被擦除。这就允许细胞创建能够形成任何类型细胞的受精卵。表观遗传微妙变化中出现错误将会导致不孕不育并出现器官故障,如如睾丸癌。Surani和Hanna的团队已经利用人造原始生殖细胞研究不同酶在表观遗传调控中的作用,也许有一天,能够解答表观遗传网络如何参与疾病调控。事实上,体外产生的原始生殖细胞可以为研究提供数百万个细胞,而不是供科学家研究了40个左右,这些细胞可以通过解剖早期胚胎获得。Hanna说:“这是一个大问题,因为我们这里有这些稀有的原始生殖细胞正在经历我们尚不了解的全基因组表观遗传变化。”“体外模型为科学家们提供了前所未有的方便,” Clark表示认同。临床意义但是Hayashi和Saitou没有办法向乞求帮助的不孕夫妻提供帮助。在这种方法被运用在临床之前,还有许多问题需要梳理。Saitou和Hayashi发现,虽然运用他们的技术所产生的后代通常似乎是健康和大量的,但这些后代产生的原始生殖细胞并生不完全“正常”。 第二代原始生殖细胞产生的卵细胞往往是脆弱、畸形的,并且从支持它们生长的组织上脱离。当受精时,卵细胞内部会分为三组染色体,而不是正常的两组,体外受精的成功率也只有正常原始生殖细胞的三分之一。哈佛医学院从事表观遗传学研究的Yi Zhang,使用Saitou的方法在研究中发现,体外受精过程中,人造的原始生殖细胞不能像自然状态下产生的原始生殖细胞一样,抹去它们的表观遗传标记。“我们必须要知道,这些都是PGCs的类似细胞,而不是真正的原始生殖细胞,”他说。此外,这项技术还存在两个大的挑战。首先是在不将PGCs放回睾丸或卵巢的前提下买入和使它们变成成熟的精子和卵子,Hayashi目前正在试图破解PGCs生成卵子或精子的生物信号,使人工培育条件下完成这一阶段成为可能。但最可怕的挑战是在人体重复上述所有的工作。该小组已经在利用Saitou找到的关键调控基因来调整人类的iPS细胞,但是Saitou 和Hayashi都知道,人类的信息调控网络不同于小鼠。此外,Saitou有无数的小鼠胚胎进行解剖,但无法在人类胚胎进行

胚胎发育分析系统相关的耗材

  • 斑马鱼显微注射模具Zebrafish Microinjection & Transplantation Kit
    斑马鱼是发育与神经生物学研究的常用模型,科学家经常采用微注射方式将吗啡啉、质粒、RNA或蛋白质等物质引入早期胚胎。这种技术虽然相对简单,但时间是非常关键的要素。研究人员经常遇到小障碍延迟实验,导致胚胎发育超出预期阶段。虽然掌握显微注射需要练习和技巧,但使用以下工具,可以显著提高成功概率。这里介绍几个塑料模具,它们是专门为斑马鱼的研究而设计的。模具灌胶后翻转放在液体琼脂糖凝胶中。一旦琼脂糖凝固,手柄可以很容易地从琼脂糖中去除。胚胎很容易被移液到琼脂糖凝胶模具的凹槽中。通过“下降和倾斜”,将胚胎加入水中,然后去除多余的水。重复这个步骤,直到凹槽中充满了胚胎。模具的宽度和结构使胚胎能够自然对齐。模具套装:DJ-21模具---注射许多胚胎-多达1000。由琼脂糖凝胶中的模具制造的凹槽将使胚胎能够自对齐。KIT-79模具--幼虫注射。倾斜的脊在琼脂糖凝胶中形成完美的角度,然后使幼虫的微注射更容易进行。KAS-21--这个模具是为了降低微注射的速度而设计的,通过在你做微注射时转动培养皿。ET-21模具--卵裂球移植。产品选购:货号产品描述包装ZF-9000斑马鱼显微注射模具Zebrafish Microinjection & Transplantation Kit套
  • 胚胎聚集针
    BLS产品中国总代理,任何其他公司在中国销售该品牌的任何产品都须经过香港友诚生物科技有限公司许可并授权.欧盟生物实验室设备与维护集团(BiologicalLaboratoryEquipment,MaintenanceandServiceLtd.简称:BLS),BLS公司是欧洲一家专业生产电融合设备的厂家,尤其在胚胎干细胞的电融合上面更具有全球独一无二的技术。BLS产品的用户遍布全球,用我们的设备发表的文章每年多达数百篇。在CELL,NATURE以及NUCLEARACID等专业杂志上经常可以见到BLS矫健的身影。其提供的大量文献与PROTOCOL给用户的科研工作带来极大的方便。 胚胎聚集针DN-10是新型设计的聚集针,在组织培养板底部形成一个小凹陷以便小胚胎的聚集,例如胚胎、ES细胞块以及移植早期的鼠胚胎。胚胎聚集针和附件球一起使用,使这些胚胎聚集针更符合人体动力学,在使用中减少手指和手的压力。
  • NSET小鼠非手术胚胎移植工具(Nonsurgical embryo transfer device for mice)
    NSET小鼠非手术胚胎移植工具(Nonsurgical embryo transfer device for mice)小鼠作为研究中最常见的模式动物,其研究的主要环节离不开胚胎移植技术。小鼠非手术胚胎移植法是将供体小鼠的胚胎经子宫颈移植到受体小鼠子宫内的一种移植方法。它与手术法相比,简单快捷, 消除了手术和麻醉的疼痛和压力,大大简化了胚胎移植的操作过程,节约时间。NSET器械是一种小型锥形导管,用于将胚胎直接插入小鼠子宫角。常用在以下实验:l DNA微注射后胚胎移植l 基因靶向改造后ES细胞移植l 冷冻保存胚胎移植l 体外受精后胚胎移植l 胚胎移植再诱导ParaTechs公司的小鼠非手术胚胎移植工具包NSET有独有的专利号码,借助NSET我们可将小鼠胚胎非手术单侧转移至子宫角。它也是一种用于研究子宫生理学和细菌感染的有效转移物质的新方法。NSET使用流程易于学习、快速、经济。NSET介导的胚胎移植也可以取代输卵管手术,用于通过显微注射生产转基因小鼠。货号产品描述规格NSET60010NSET小鼠非手术胚胎移植工具10个/包
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制