胚胎定位观察系统

仪器信息网胚胎定位观察系统专题为您提供2024年最新胚胎定位观察系统价格报价、厂家品牌的相关信息, 包括胚胎定位观察系统参数、型号等,不管是国产,还是进口品牌的胚胎定位观察系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合胚胎定位观察系统相关的耗材配件、试剂标物,还有胚胎定位观察系统相关的最新资讯、资料,以及胚胎定位观察系统相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

胚胎定位观察系统相关的厂商

  • 400-860-5168转4095
    重庆市柏玮熠技有限公司 重庆市柏玮熠科技有限公司位于美丽的山城市重庆,重庆柏玮熠公司本着“陪伴、成长、优秀、创新”的理念,专注于人类辅助生殖医学技术领域,致力于推动全球最先进的辅助生殖医学的仪器设备、最优质的试剂耗材、最优化的培养体系及方案,在国内生殖中心的广泛应用,服务于生殖中心的医务流程,回馈广大生育需求的家庭。公司优质服务项目:辅助生殖专业技能培训:联合国际培训机构EMBYRO TOOLS 对胚胎学家进行专业技能培训(如ICSI、PGD 、PGS);胚胎实验室质控培训;胚胎实验室操作规程定制;胚胎实验室ISO国际认证优化囊胚培养系统:全程无干扰的胚胎实时观察系统:新加坡ESCO miri-TL 全程无干扰一步式培养基:美国LifeGlobal 全程培养室内空气净化系统:美国Coda Air 临床优化方案:杜绝医源性交叉污染:康医博一次性超声穿刺架; 排除敏感人群对妊娠结果的影响:PET财质阴超探头套,无油无粉无乳胶; 微刺激方案配套设备:丹麦IVFDevies 公司的FLUSHER 多功能卵泡冲洗器; WI-FI无线超声诊断仪:所有超声主机集成在手机大小探头上配子及胚胎最强大的操作系列:德国OCTAX激光破膜仪 OCTAX卵子纺锤体及透明带评分系统; OCTAX精子放大系统; OCTAX胚胎实验室监控报警系统;生殖中心信息化管理平台:病患资料管理电子化; 胚胎及配子样本核对电子信息化; 中心职员流程绩效管理电子信息化; 安全管理(气体管道自动切换报警系统,设备多参数监控智能远程信息化)
    留言咨询
  • 北京汇海公司拥有15年以上水下测绘勘察行业经验,目前主要从事水下无人智能定位测绘检测维修维护清淤等工作。提供SAAB Seaeye水下机器人、水下推进器、液压/电动机械臂、水下灯光摄像头、水下激光尺、2D/3D图像声呐、2D/3D成图软件、水下管线仪、水下导航定位GPS、水文测量、水环境监测等水下设备,适用于水电大坝渠道缺陷检测、海上风电基桩电缆检测、海上科研水下设备连接和回收、潜水消防水下定位导航、水产养殖网观察清洗等应用。公司还提供各品牌进口二手单多波束声呐、侧扫声呐、温盐深、声速剖面仪、定位跟踪设备、姿态仪、水下机器人、绞车、A架、机械臂、ROV工具、脐带缆、声呐、摄像头灯光、ROV备件等
    留言咨询
  • 艾睿光电专注于红外成像技术和产品的研发制造,红外热像仪以及红外热成像仪,具有完全自主知识产权,致力于为全球客户提供专业的、有竞争力的红外热成像产品和行业解决方案。主要产品包括红外焦平面探测器芯片、热成像机芯模组和应用终端产品。红外热成像仪、VOC检测仪、公司研发人员占比48%, 已获授权及受理知识产权项目共2030件:国内专利及专利申请1299件(包括集成电路芯片、MEMS传感器设计和制造、Matrix IV图像算法、AItemp智能精准测温算法、IR-Pilot 红外AI智驾方案等);国内商标申请共278件;国外专利及专利申请47件;国外商标申请133件;软件著作权215件;集成电路布图设计58件。公司产品广泛应用于智慧工业、户外观察、人工智能、机器视觉、智能驾驶、无人机、安防消防、物联网、医疗健康等领域。可靠性实验室总占地1200㎡,配备了高低温试验箱、步入式烘箱、温冲/快速温变试验箱、淋雨沙尘及振动冲击台等近60台设备,投资数千万。可以满足GB/T2423及GB/T28046相关标准,平台已通过CNAS认证 。

胚胎定位观察系统相关的仪器

  • 胚胎植入前遗传学检查包括胚胎植入前遗传学诊断,和胚胎植入前遗传学筛查等等,目前主要应用于单基因病检测、染色体异常、高龄女性、不明原因的反复自然流产、不明原因的反复种植失败等,胚胎前微注射孵育器可以有效解决胚胎活检产物转移设备的准确定位的技术问题,可有效提高研究手段,解决众多困扰的难题。
    留言咨询
  • Hamilton Thorne XYClone多功能胚胎激光破膜系统 XYclone 是美国Hamilton Thorne Bioscience公司为全球所有致力于胚胎研究,转基因研究,干细胞研究以及动物生殖,育种,克隆等研究学者度身定做的一套激光破膜系统。仅用于科学研究。 XYclone主要由带激光发生器的物镜,摄像机和带图形处理硬件和软件的电脑三部分构成。激光发生器安装在物镜转换台上,放大倍数为20倍或者40倍。通过电脑设定好激光的强度,确定好激光作用的准确位置,使用脚踏板或者鼠标即可发射激光,在胚胎或卵细胞的透明带,卵黄膜上打孔。 XYclone是一套配备了激光发射器,物镜,照相系统,图形卡以及统计和图形处理软件的激光破膜系统。采用红外激光,替代以前的紫外激光,消除了后者对细胞产生的光毒性。激光打孔对细胞无挤压,孔径小,精确,消除了传统的玻璃针穿刺,Peizo机械打孔引起的细胞胞质外流等缺点,显著提高存活率。微秒级脉冲有效保证胚胎安全。配合激光各种参数的设置能完成极其细小的切除,适用于多种物种胚胎透明带的薄化,显著提高妊娠率。专利的激光技术疏松细胞间的连接,分离内细胞团,近似&ldquo 切割&rdquo 功能。消除传统取ICM细胞的憋端。软件设计了彩色的温度环,清晰明了地显示出激光孔周围温度,有效地防止对细胞的损伤。如橙色(100℃)标示孔径的实际大小,最外层紫色环温度是50℃。 激光系统采用无接触式方式在胚胎上操作,不需要尖利的玻璃针,水银等耗材。既节省资源,避免了胚胎污染又保护了环境(水银蒸发对人体和环境有害)。 20倍或者40倍XYclone,安装在物镜转换台上,替代同等放大倍数的物镜。不占用显微镜UV插口,因此在同一台显微镜上既可以观察荧光也可以使用激光破膜仪,同时可以节省一个或者两个物镜,降低成本。 高清晰照相机,图形处理系统,给实验室增加一套高质量的显微摄像系统。 强大的软件功能,可以测定胚胎透明带的厚度;胚胎,激光孔径,原核的大小;同时给出统计数据。根据用户需要拍摄,录像,处理照片,储存,输出直接作为教学和讲座用途。 操作极其简单,几分钟即可。无需培训专门的技术人员。技术参数:激光种类和功率: 1480 nm, 红外激光,单激光或双激光,300 mW (Class I)激光脉冲: 1 到 3000 微秒可调激光强度: 1% to 100%可调激发模式: 鼠标,或脚控(选配)激光区域: 圆圈或者箭头标识,范围可调,彩色温度环显示准确温度激光调节: 激光光轴出厂预设。更换场地无需重复调节。标准物镜: 40X 或 20x 视频系统: 摄像机:高清晰度彩色数字或黑白模拟信号相机可选 软件功能: 测量透明带厚度,平均值和标准差,胚胎,原核和激光孔径大小;编辑和记录数据, 输 出文件记录数据;输出文件编辑采集的图形兼容性: 匹配所有品牌的倒置显微镜,与荧光系统兼容
    留言咨询
  • 简介:EggSorter是一种经济高效的设备,可以自动进行目视检查,分类和分配尺寸从0.6到1.5毫米的微型生物实体。 我们的专利技术为密集处理斑马鱼胚胎或其他类似动物模型的实验室提供了一种便携式且价格合理的解决方案。我们已经专门开发了算法来识别斑马鱼卵(Danio rerio)的不同配置。 这些卵可以根据它们的受精阶段或生物标记物的存在进行分类。 一旦处理完毕,所有样品都可以分配到Falcon管,培养皿和96孔板中。工作原理:EggSorter设备的核心是一个旋转轮,可以一个个地抓住鱼卵,并将它们放置在光学镜的前面进行检查。 然后,在嵌入式计算机上检索鱼卵的图片,将其保存在cloud上,并使用基于深度学习的各种算法对每个鱼卵进行分类。 在此过程之后,每个鸡蛋可以根据其分类保持在设备内部以进行连续检查,也可以将其抽空并放置在多个容器中。胚胎的分类:在设备上部署特定算法,以确定鱼卵在受精后一小时开始是否出现异常。 用户也可以对算法进行调整,因为它们将取决于对鱼卵进行的研究类型。 该算法还可以根据其他标准(例如胚胎的年龄和生物标记物的存在)对卵进行分类。有兴趣看到从受精到孵化的幼体的发育过程吗? 只需将鱼卵插入EggSorter,就可以观察并记录多达36个鱼卵的连续发育情况。 它们将被捕获在转轮中,并在触屏上显示鱼卵的同时定期拍摄照片。用户界面:我们开发了方便的用户界面,使用户可以轻松地与设备进行交互,并充分利用可用功能。 EggSorter通过易于配置的Android应用程序进行控制。 该应用程序在嵌入式计算机上运行,用户可以通过触摸屏与之交互。 可以将更大的屏幕插入设备,以便可以将鱼卵图片投影到高清屏幕上。将鱼卵分配到多孔板上的过程非常漫长且繁琐。 EggSorter可以自动将选定的鱼卵分配到96孔板中。此外,可以跟踪拍摄的图像并将其关联到板上的每个孔中。
    留言咨询

胚胎定位观察系统相关的资讯

  • 滨松红外荧光定位观察相机PDE助力乳腺癌术后乳房再造技术
    第十届全国乳腺癌术后乳房重建学习班于2018年5月11日至5月12日在天津肿瘤医院举办,围绕乳腺癌术后乳房再造技术,行业专家们进行了学术交流和演示示教。 因可对皮瓣血运情况判断便捷易行、清晰准确,荧光定位显像技术作为会议的重要话题之一被提出。除了深入的学术探讨以外,还实施了现场手术演示。滨松红外荧光定位观察相机PDE作为本次会议中荧光定位显像技术的提供者,充分展示了该技术对皮瓣血运判断发挥的重要作用。滨松红外荧光定位仪(Photodynamic Eye,PDE)是一套医学荧光显像系统,主要用于医用荧光显像,通过观看示踪剂的流动状态,帮助临床医生实时观察血管、淋巴管的状况,从而判断血运状态。在皮瓣血运、穿支定位、穿支选择时起到直观判断、实时显示的作用,在整形领域有广泛的应用空间。
  • 光学显微镜的主要观察方法之荧光观察
    应用专家 易海英 荧光现象荧光是指荧光物质在特定波长光照射下,几乎同时发射出波长更长光的过程(图1)。当特定波长(激发波长)的光照射一个分子(如荧光团中的分子)时,光子能量被该分子的电子吸收。接着,电子从基态(S0)跃迁至较高的能级,即激发态(S1’)。这个过程称为激发①。电子在激发态停留10-9–10-8秒,在此过程中电子损失一些能量②。电子离开激发态(S1)并回到基态的过程中③,会释放出激发过程中吸收的剩余能量。荧光分子在激发态驻留的时间为荧光寿命,一般为纳秒级别,是荧光分子本身固有的特性。利用荧光寿命进行成像的技术叫荧光寿命成像(Fluorescence Lifetime Imaging,FLIM),可以在荧光强度成像之外,更加深入地进行功能性精准测量,获取分子构象、分子间相互作用、分子所处微环境等常规光学成像难以获得的信息。荧光的另一个重要特性是Stokes位移,即激发峰和发射峰之间的波长差异(图2)。通常发射光波长比激发光波长更长。这是由于荧光物质被激发之后、释放光子之前,电子经过弛豫过程会损耗一部分能量。具有较大Stokes位移的荧光物质更易于在荧光显微镜下进行观察。图2:Stokes位移荧光显微镜及荧光滤块荧光显微镜是利用荧光特性进行观察、成像的光学显微镜,广泛应用于细胞生物学、神经生物学、植物学、微生物学、病理学、遗传学等各领域。荧光成像具有高灵敏度和高特异性的优点,非常适合进行特定蛋白、细胞器等在组织及细胞中的分布的观察,共定位和相互作用的研究,离子浓度变化等生命动态过程的追踪等等。细胞中大部分分子不发荧光,想要观察它们,必须进行荧光标记。荧光标记的方法非常多,可以直接标记(比如使用DAPI标记DNA),或利用抗体抗原结合特性进行免疫染色,也可以用荧光蛋白(如GFP,绿色荧光蛋白)标记目标蛋白,还可以用可逆结合的合成染料(如Fura-2)等。图3:Leica DMi8倒置荧光显微镜及滤片转轮目前荧光显微镜已成为各个实验室及成像平台的标配成像设备,是我们日常实验的好帮手。荧光显微镜主要分为三大类:正置荧光显微镜(适合切片)、倒置荧光显微镜(适合活细胞,兼顾切片)、荧光体视镜(适合较大标本,如植物、斑马鱼(成体/胚胎)、青鳉、小鼠/大鼠器官等)。荧光滤块是显微镜荧光成像的核心部件,由激发滤片、发射滤片和二向分光镜三部分组成,安装在滤片转轮里,如Leica DMi8配有6位滤片转轮(图3)。不同的显微镜转轮位数会有区别,也有些显微镜使用滤块滑板。滤块在荧光成像中起着重要作用:激发滤片选择激发光来激发样品,阻挡其他波长的光;通过激发滤片的光经过二向分光镜(其作用是反射激发光和透射荧光),反射后通过物镜聚焦,照射到样品,激发出对应的荧光即发射光,发射光被物镜收集,透过二向分光镜,到达发射滤片。如图4中:激发波长为450-490nm,二向分光镜反射短于510nm的光、透过长于510nm的光,发射光接收范围为520-560nm。图4:荧光显微镜光路图荧光显微镜常用荧光滤块可分为长通(long pass,简称LP)和带通(band pass,简称BP)两种类型。带通通常由中心波长和区间宽度确定,如480/40表示可通过460-500nm的光。长通滤色片如515 LP,表示可以通过波长长于515nm的光(图5)。图5:FITC光谱曲线及滤片荧光物质具有其特征性激发(吸收)曲线和发射曲线,激发峰为最佳激发波长(激发效率最高,从而可以降低激发光能量,保护细胞和染料),发射曲线为发射荧光波长范围。因此,在实验中,我们会尽可能选择与激发峰最接近的波长进行激发,而接收范围需包括发射峰。如Alexa Fluor 488的激发峰为500nm,在荧光显微镜中可以选择480/40的激发滤片。图6:Alexa Fluor 488光谱曲线滤块的详细信息可以在显微镜成像软件里看到。了解染料并找到最匹配样品的滤块对于荧光成像有着至关重要的作用。荧光染料和荧光蛋白的光谱信息一般在说明书中会注明,也可在网上查阅(如https://www.leica-microsystems.com/science-lab/fluorescent-dyes/、https://www.leica-microsystems.com/science-lab/fluorescent-proteins-introduction-and-photo-spectral-characteristics/)。滤块的选择除考虑荧光探针的激发、发射波长,对于多色标记样品还需考虑是否有非特异激发、是否串色。此外还需考虑所使用的荧光光源,目前常用的荧光光源有汞灯、金属卤素灯,以及近年来飞速发展的LED光源。荧光光源的光谱有连续的和非连续的,在不同波段能量也会不同。LED光源因为其相对较窄的光谱带、更稳定的能量输出、超长的寿命、更安全环保等诸多优点,正逐步成为荧光显微镜的主要光源。除了显微镜内置的滤块,还有外置快速转轮(图7),徕卡的外置快速转轮相邻位置滤片转换速度为27ms,可实现高速多色实验,如FRET及Fura2比例钙成像(图8)等。图7:徕卡外置快速转轮EFW图8:钙成像,Fura2, Cultured hippocampal astrocytes from 18-day-old embryos of Sprague-Dawley rats. Courtesy of: Drs. Kazunori Kanemaru and Masamitsu Iino, Department of Pharmacology, Graduate School of Medicine, The University of Tokyo 丰富多样的荧光显微成像技术为了满足不同的荧光成像需求,除荧光显微镜外,还发展出了各种荧光显微成像解决方案:? 宽场高清成像系统,如Leica THUNDER Imager,采用Leica创新的Clearing专利技术,在成像时高效去除非焦平面干扰信号,呈现清晰图像,同时兼有高速成像的优点;? 共聚焦激光扫描显微镜,利用针孔排除非焦平面干扰,实现光学切片,得到高清图像及三维立体图像;? 突破衍射极限的超高分辨率显微镜及纳米显微镜,可对小于200nm的精细结构进行观察;? 利用多光子激发原理进行厚组织及活体深层成像的多光子成像系统;? 具有高时空分辨率的光片成像技术,成像速度快、分辨率高、光毒性低,特别适合进行发育、活体动态观察等研究;? 荧光寿命成像(FLIM),不受荧光物质浓度、光漂白、激发光强度等因素的影响,能更加深入地进行功能性精准测量;? 荧光相关光谱(FCS)及荧光互相关光谱(FCCS),测量荧光分子的分子数、扩散系数,从而分析分子浓度、分子大小、粘性、分子运动、分子结合/解离、分子的光学特性等;? 全内反射荧光显微镜(TIRF),极高的z轴分辨率,非常适合细胞膜表面的分子结构和动力学研究。 荧光显微成像技术应用广泛,种类丰富,而且新技术还在不断涌现,大家可以选择最适合的技术去完成自己的研究。
  • 倒置荧光显微镜MF53-N观察牛体外受精
    解锁生命科学奥秘 | 倒置荧光显微镜MF53-N观察牛体外受精试管婴儿手术主要是将成熟的卵子和精子从人体取出,经过体外受精、胚胎移植等操作实现受孕。其中,借助显微注射法强迫受精,是试管婴儿手术的重中之重。近期,西北用户想在倒置荧光显微镜MF53-N下,将牛精子注射到卵母细胞中,实现体外受精。研究级倒置荧光显微镜MF53-N,配备6孔转盘式荧光模块和超长寿命LED荧光光源,可扩展升级实现各种观察方式,高数值孔径半复消色差物镜成像清晰,可升级高精度XYZ三轴电动平台,高精度的显微成像系统,有效提高了受精率、囊胚形成率、妊娠率,为不孕不育患者带来了福音。倒置荧光显微镜MF53-N系统以“满足苛刻实验要求”为出发点,为系统配备良好的升级扩展性。标配明场、相衬和荧光观察,可升级霍夫曼相衬,透明热台、显微操作系统等IVF相关设备都可以与该系统兼容,这为实验室的搭架、更新提供了便利。 免责声明本站无法鉴别所上传图片、字体或文字内容的版权,如无意中侵犯了哪个权利人的知识产权,请来信或来电告之,本站将立即予以删除,谢谢。来源:https://www.mshot.com/article/1813.html

胚胎定位观察系统相关的方案

  • 如何运用BLS细胞融合仪及胚胎聚集针创建胚胎
    如何运用BLS细胞融合仪及胚胎聚集针创建胚胎 注射器内吸入培养基,在35mm组织培养板上微滴(大致直径3mm)点样成若干行(列)。向培养板内小心注入石蜡油使其覆盖整板,注意不要使石蜡油直接倾倒在微滴上。石蜡油很容易越过这些微滴。石蜡油的量要完全覆盖这些微滴。使用配件按照说明操作,制作凹陷。37度,5%CO2条件下孵育培养板几小时,目的是让培养基在液滴内达到平衡。这一步可以在形成凹陷的步骤之前进行。实验前准备好待聚集的细胞,组织或胚胎,不要将它们长时间暴露在室温下或脱离最适培养条件时间过长。通过在组织培养板盖上加入几滴M2培养基和Tyrode’s酸溶液来去除卵透明带。将组织培养板的培养区域表面如此处理后,胚胎将本能的黏附在表面—因此我们需要使用盖。确认所有培养基溶液和酸液都接近室温。将胚胎放置在一滴M2培养基上。取尽可能少的内含10-20个胚胎的培养基,并移到一滴酸液上。重复这个步骤并将胚胎移到新的一滴酸液上。让胚胎在吸头内保持上下移动,观察卵透明带是如何溶解的。迅速将胚胎移入M2培养基。用几滴培养基溶液洗涤并移入刚才制成的凹陷中。胚胎培养条件是聚集产量的一个重要因素,因为胚胎要培养过夜,如果是四倍体胚胎在移入母体前需要培养48小时。在培养的每个细节都必须小心操作控制。这包括温度,大气,培养基,室温操作时间及矿物油质量。
  • 胚胎脑片免疫荧光组织化学双重漂染技术在神经元发生研究中的应用
    使用琼脂糖包埋胚胎脑组织, 振动切片机切片,免疫荧光组织化学技术漂染, 激光扫描共聚焦显微镜下观察, 这种技术比一般免疫组织化学技术在研究脑发育方面有更多的优越性。
  • 胚胎显微操作-胚胎分割
    胚胎显微操作-胚胎分割 (一)概况 胚胎分割是通过对胚胎进行显微操作,人工制造同卵双生或同卵多生的技术,它是扩大胚胎来源的一条重要途径,其理论依据是早期胚胎的每一个卵裂球都具有独立发育成个体的全能性。 本世纪三十年代,Pinrus等首次证明兔2细胞胚的单个卵裂球在体内可发育成体积较小的胚泡。之后,Tarkowski等人的实验胚胎学研究成果进一步证明了哺乳动物2细胞胚的每一个卵裂球都具有发育成正常胎儿的全能性。七十年代以来,随着胚胎培养和移植技术的发展和完善,哺乳动物胚胎分割取得了突破性进展。Mullen等于1970年二分2细胞期鼠胚,通过体外培养及移植等程序,获得了小鼠同卵双生后代。Willadsen于1979年通过分离早期胚胎的卵裂球,成功地获得了绵羊的同卵双生后代。国内张涌等通过分割小鼠、山羊早期胚胎,均获得了同卵双生后代。进一步研究表明,四分胚,八分胚也可以发育成新个体。窦忠英等将7日龄的牛胚胎一分为四,实现了同卵三生。值得说明的是,随着胚胎分割次数的增多,分割胚的发育能力明显降低,这可能与胞质的不断减少有关。 (二)分割方法 胚胎分割方法主要有显微操作仪分割和徒手分割两种。

胚胎定位观察系统相关的资料

胚胎定位观察系统相关的试剂

胚胎定位观察系统相关的论坛

  • 【资料】美国科学家解开胚胎干细胞信号通道之谜

    美国南加州大学科学家表示,他们新发现的名为IQ-1的小分子在防止胞胎干细胞分化成一种或多种特殊细胞方面具有决定性作用,该研究成果有望帮助人们开发出无污染大规模培养胚胎干细胞的方法。有关研究刊登在美国《国家科学院院报》网站上。  干细胞疗法是许多科学家研究的热门项目,大规模培养胚胎干细胞是干细胞疗法成功发展的前提。目前,实验鼠纤维原细胞饲养层是唯一被证明为能够培养胚胎干细胞的方法。在此方法中,必要的化学信号能促使胚胎干细胞不断分裂而不分化。然而,南加州大学凯克医学院医学和药学教授迈克尔卡恩博士表示,人体胚胎干细胞用饲养层培养会遭受实验鼠糖蛋白标识的污染,如果将培养的干细胞用于人体,或许出现可怕的免疫反应。  作为发现IQ-1小分子的研究小组主要研究人员,卡恩表示,他们发现的小分子帮助人们向实现无实验鼠纤维原细胞饲养层培养胚胎干细胞的方法往前迈进了一步。对于IQ-1的工作原理,卡恩解释说,Wnt通道(也就是细胞信号通道)对干细胞具有分叉效应(dichotomouseffects),IQ-1能够在阻断Wnt通道一个分叉的同时,增强来自Wnt通道另分叉的信号。这样,人们可以从根本上维持干细胞的生长和所需的力量。  卡恩认为,如果人们能够创造出一个化学物质环境的系统来培养人体胚胎干细胞,那么就可以避免干细胞受污染的危险,它将让科学家的工作更加容易,这是研究小组的奋斗目标。凯克医学院干细胞和再生医学中心主任马丁佩拉博士表示,卡恩他们的研究让人们能够观察胚胎干细胞内部分子控制机制,其新发现有望帮助人们开发出大规模繁殖纯胚胎干细胞的技术。

  • 【求助】如何定位电镜实验中的样品观察的准确位置

    请问各位前辈,相对样品同一个位置处理前后做一个观察,如何去定位电镜实验中的所观察样品的准确位置,而且样品也不导电,因为要处理所以不想用高真空镀金的方式,但是低真空观察表面又不清晰,刚接触这个设备,没有什么经验,不晓得有没有前辈晓得处理方法,还请不吝赐教,感激不尽!

  • 新显微镜可追踪胚胎发育单细胞分裂过程 有助于理解一个单细胞怎样变成了复杂的组织

    中国科技网讯 从一个受精卵发育成多种功能的胚胎,细胞要经过上千次分裂和复杂的排列重组。据物理学家组织网6月3日报道,霍华德·休斯医学研究院珍妮莉娅法姆研究学院开发出一种最新的成像技术,能以前所未有的速度和精确度看到这一过程,让人们能追踪胚胎成形时每个细胞在几天甚至几小时内的变化。相关论文发表在6月3日出版的《自然·方法学》上。 研究人员演示了一段约20小时的果蝇胚胎发育视频。在视频中,生物结构逐渐出现,从一小团简单的细胞簇慢慢变长,变成上万个细胞紧紧挤在一起的拉长的小胚胎,然后在新形成的肌肉收缩舒张下开始颤动,此时胚胎仅有半毫米长。此外,论文中还有一段果蝇胚胎中枢神经系统完整的发育视频,跟踪了单个细胞发育出感觉器官、脑叶及其他结构的过程,由于分辨率足够高,还能看到神经轴突尖端迅速变化。 发明该技术的珍妮莉娅法姆研究学院的菲利普·凯勒说,要理解一个单细胞怎样变成了复杂的组织,真实看到这一过程非常重要。传统光学显微镜速度太慢,无法跟踪细胞在生命初期的迅速变化,也容易破坏一个活胚胎,只能通过把多阶段、多组织的照片拼在一起,才能推测发生的变化,但“细胞分裂重组每次都不一样,这种观察方法可能会产生误导”。 新技术基于一种高速非侵入式光学显微镜,称为SiMView光层显微镜,能从4个角度同时拍摄图像,不仅能跟踪细胞运动,还能对发展过程进行数量分析。该显微镜由凯勒小组和德国的欧洲分子生物实验室合作开发,攻克了传统光学显微镜的两个难题:一是光源对样本造成的伤害,二是对海量数据进行处理分析。 大部分光源都会伤害细胞,使其中的荧光标记消失。研究小组设计的照明技术是一种激光扫描层,一次照射样本极薄的一层以减少伤害,由探测仪记录下被照亮的部分。光层来自两个相反方向,并用两个探测仪来探测荧光,照明与探测相结合,提供了4个不同的观察角度。不仅能避免由于光散射而造成的模糊,还将图像采集速度提高了50倍。 要让照亮样本和探测荧光在时间、位置上协调一致,时机吻合极为重要,光层交叉通过会造成图像模糊,发光间隔仅几毫秒。为了保持精度,SiMView还安装了实时调节的电子系统。 显微镜每秒会收集350Mb的数据,一个样本一天要产生海量数据,而不同条件或不同基因的发育对比实验,所要求的数据比这还要多好多倍。为此,研究人员开发出一种新的计算方法,能识别并跟踪显微镜视频中单个细胞并自动分析。这些都构成了拍摄活样本这一完整技术框架的必要组成部分。 凯勒表示,他们还将继续改进显微镜使计算过程更加有效。今后不仅能追踪胚胎中细胞的一代代世系,还可能控制发育以探索发育机制,并研究其他更大更复杂样本的发育过程。(常丽君) 《科技日报》(2012-06-05 二版)

胚胎定位观察系统相关的耗材

  • 培养皿定位观察台Petri Orienter and Stand
    培养皿定位观察台Petri Orienter and Stand是经常培养皿观察计数者的福音!原始的以点数记忆法计数培养皿中的细菌菌落数,既不准确,又增加菌落重复数的可能性,造成误差的机会较大。我们推出这款简介方便的培养皿定位观察台,可减少菌落重复数造成的误差。l 针对固体培养基l 防疲劳设计:30度倾角l 抽拉槽设计:定位板随意更换l 准确l 清晰可见订购信息:货号产品描述规格70498-01PetriDish Stand, 88mm diameter,观察台个70498-02PetriDish Stand, 100mm diameter,观察台个70498-03PetriOrienter, 32-square grid,定位片片70498-04PetriOrienter, 50-square grid,定位片片70498-07PetriOrienter, 6-sector pie,定位片片70498-08PetriOrienter, 8-sector pie,定位片片70498-09PetriOrienter, 12-sector pie,定位片片70498-10PetriOrienter, 16-sector pie,定位片片
  • 胚胎聚集针
    BLS产品中国总代理,任何其他公司在中国销售该品牌的任何产品都须经过香港友诚生物科技有限公司许可并授权.欧盟生物实验室设备与维护集团(BiologicalLaboratoryEquipment,MaintenanceandServiceLtd.简称:BLS),BLS公司是欧洲一家专业生产电融合设备的厂家,尤其在胚胎干细胞的电融合上面更具有全球独一无二的技术。BLS产品的用户遍布全球,用我们的设备发表的文章每年多达数百篇。在CELL,NATURE以及NUCLEARACID等专业杂志上经常可以见到BLS矫健的身影。其提供的大量文献与PROTOCOL给用户的科研工作带来极大的方便。 胚胎聚集针DN-10是新型设计的聚集针,在组织培养板底部形成一个小凹陷以便小胚胎的聚集,例如胚胎、ES细胞块以及移植早期的鼠胚胎。胚胎聚集针和附件球一起使用,使这些胚胎聚集针更符合人体动力学,在使用中减少手指和手的压力。
  • 可夹持观察样品截面样品台
    【产品详情】此带夹持样品台可用于夹持固定样品侧面,方便SEM中观察样品截面,也可用来夹持处于脱水处理中的生物组织样品,进行SEM等观察。适用于任何标准的样品台,材质为铝材质。样品台尺寸:长26mm×宽12.6mm×高11mm;腿长8mm;中间夹持凹槽部分约4mm。产品详细价格及资料,请登录电镜耗材在线商城网站查看。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制