您好,欢迎访问仪器信息网
注册
诺坦普科技(北京)有限公司

关注

已关注

白金7年 白金

已认证

粉丝量 0

400-860-2855

仪器信息网认证电话,请放心拨打

当前位置: NanoTemper > 公司动态
公司动态

IF: 46.9 | 多元互作案例分享--首选NanoTemper的MST技术!

01研究背景蛋白质在发挥生物学功能时,常常需要与其他分子发生结合形成复合物。相比于研究单体蛋白质,直接研究蛋白复合物的功能以及与其他分子的互作能更加清楚的解释生物学问题或者开发真正发挥作用的药物分子。复合物一般分子量更大,互作检测时需保证复合物处于正确的结合构象,而其他基于固定相技术可能会影响复合物的构象,或无法与待检测互作分子达到平衡,影响检测结果。这次我们带来的这篇文献,讲述如何使用MST技术成功检测DNA-蛋白复合体与ssDNA互作的故事。https://doi.org/10.1038/s41587-024-02255-7IF: 46.9 Q102研究内容V型和VI型CRISPR-Cas系统已被证明可以在crRNA引导下切割靶标DNA/RNA(顺式切割)。此外,还可以随机切割非特异性单链DNA/RNA(反式切割),但在II型CRISPR-Cas系统中尚未观察到反式切割。2024年5月29日,厦门大学生命科学学院刘亮教授课题组发表在Nature biotechnology (IF:46.9)上,题为“Trans-nuclease activity of Cas9 activated by DNA or RNA target binding”的研究论文,首次揭示了gRNA (guide RNA)引导的Cas9对ssDNA和ssRNA底物都显示出RuvC结构域依赖的反式切割活性。同时,通过MST技术研究Cas9-sgRNA-target RNA复合物对反式切割底物的序列偏好。基于Cas9的反式切割活性和核酸扩增技术,作者开发了DNA/RNA激活Cas9的核酸检测平台。                                             通过分析Cas9-sgRNA-target RNA复合物的结构信息发现,Cas9与dgRNA和互作ssDNA组装后,Cas9的两个催化结构域参与形成了一个能够容纳非靶DNA的通道。作者怀疑该通道上可能会结合一个序列和结构特异性的DNA底物。接下来,需检测SpyCas9 - sgRNA -target ssDNA复合物是否可直接结合非特异性poly ssDNA底物以及对底物的偏好性。由于MST是一种在溶液条件下进行直接检测互作亲和力的手段,无需对样品进行固定,因此,不会因固定对SpyCas9 - sgRNA -target ssDNA复合物结构造成影响。此外,MST检测两个分子达到结合解离平衡状态,因此,对于涉及到的非常复杂的复合物SpyCas9 - sgRNA -target ssDNA和另外ssDNA的互作检测,MST也可轻松供应对。实验时,将cy5荧光标记的crRNA -target ssDNA(TS)与SpyCas9-sgRNA 提前孵育形成稳定的复合物,再加入ssDNA,孵育平衡后进行亲和力检测,获得更加准确的亲和力Kd结果。MST结果表明,SpyCas9偏好poly(T)和poly(C)。图示:MST检测SpyCas9-sgRNA-TS复合物与poly(A)、poly(T)、poly(C)和poly(G)之间的相互作用03技术优势在这篇文献中,通过MST技术检测复合物SpyCas9-sgRNA-TS复合物与底物ssDNA的相互作用。对于分子互作亲和力的检测,Monolith系列仪器不依赖于分子量的改变,蛋白用量少,可以在溶液中表征蛋白复合物和其他分子的相互作用,有利于多元分子平衡,获得更加准确的亲和力结果。Monolith分子互作检测仪

应用实例

2024.06.21

干货满满!看 Panta 轻松预测 ADC 稳定性

话题介绍如何预测稳定性实验?对于ADC研发人员来讲,通过进行一系列蛋白质评估将有助于降低早期开发过程中最终产物不稳定的风险,特别是在优化偶联过程中,这些评估策略显得尤为重要。在本期文章中,我们来重点讲讲如何进行预测稳定性实验。借助PR Panta蛋白稳定性分析仪来推断低浓度样本在提高剂量, 并在更高浓度下用于临床给药后的表现。因为,这对于降低筛选过程的风险和确保筛选过程中获得最稳定的候选分子至关重要。一起看看PR Panta提供的真实数据示例,它们比较了裸抗--Trastuzumab(或称Herceptin),与ADC药物分子Kadcyla,和另一种来源于同类裸抗的ADC药物分子 RC48之间的多个维度预测信息。实验热稳定性实验背景  首先,很重要的第一步,我们要先了解标准的热稳定性实验。在PR Panta上进行这些实验很简单,使用相同的样本收集信息,根据候选分子的热稳定性(如Tm和Ton)以及通过PDI、Tsize和Tagg 的胶体稳定性参数对其进行排名。简单地说,首先比较每种的热变性曲线。Herceptin,裸抗,具有最高的热稳定性,与ADC药物分子Kadcyla相比具有更高的Tm1和更清晰的变性展开转变Kadcyla和RC48都表现出Tm1的峰增宽,表明大多数药物与该展开转变相关的结构域缀合--这是个好现象,因为Tm1对应CH2结构域,而Tm2和Tm3分别是Fab结构域和CH3--尽管它们通常很接近,仅显示单个Tm2RC48是一种由另一个母版裸抗构建的ADC药物,与Kadcyla相比,Tm1略有进一步降低。此外,可以判断它是一种与Herceptin不同的裸抗,因为变性展开的曲线轮廓有很大的变化,包括分别展现出的Tm2和Tm3PR Panta高分辨率的热变性展开数据,对每个ADC或mAb的变性结构展开提供了高度精细的分辨率,使其能够在结构域水平上体现出低至0.2°C的差异。这三种药物都经过了优化,可用于临床,因此稳定性的变化是最佳的,不像在开发过程的早期,需要比较候选药物分子--比如,需要筛选不同的偶联策略。因此,这些数据是了解偶联过程如何影响ADC稳定性的好方法。实验预测数据:3个实验了解ADC当我们已经了解了热变性曲线的数据,接下来是时候看看PR Panta可以解锁的预测参数了。1自缔合自缔合参数kD和第二维里系数B22都是告知生物在高浓度下可能如何表现的参数。其中任何正值都表明药物分子不太可能自我缔合--这是一个理想的结果。自缔合会导致聚集和高粘度,由于许多治疗方法在临床上是以高浓度给药,因此,最好在开发过程的早期就了解ADC是否容易发生自缔合。 自缔合参数kD自缔合参数kD是利用PR Panta的DLS检测模块导出的关于扩散常数的信息,来评估分子与自身相互作用的可能性。正kD表示排斥力(这是好的);负kD是有吸引力的(要避免)。数据显示:裸抗(mAb)具有高度自排斥性,表现出具有强趋势线的正kD。这意味着它不太可能在高浓度下的发生自缔合。在PR Panta中表征的数据结果与其他已发表的数据结果一致Kadcyla也有正kD,尽管它没有那么强的自我排斥。然而,它仍然被认为是一个“好”的结果,kD为正RC48表现出自缔合的倾向,kD为负第二维里系数B22第二维里系数B22是利用PR Panta的SLS检测模块得出的,是着眼于整体情况下自身相互作用的强度。尽管B22和kD之间存在关系,但它们是相互独立的进行判断,因此并不总是完美地一致。SLS的散射数据在用于低浓度样本下更容易出错。然而,一些研究人员更喜欢B22而不是kD,因为B22的数据被认为是对样本内相互作用的更“全局”的测量。如下图所示, B22的趋势看起来与kD的趋势非常相似。PR Panta数据计算出的Herceptin自缔合数值较好地反映了文献值,所提供的自缔合数值为您的分子,在放大工艺生产之前,提供了更宝贵的预测信息。2动力学稳定性动力学稳定性实验,着眼于表征以不同的升温速率设置热变性展开实验时,候选分子的热稳定性行为。通过测量蛋白质随着热升温速率的变化而展开的速度,可以计算出展开的活化能。只需以不同的速率设置一系列热变性曲线,然后比较熔化展开温度如何随速率变化即可。之后,使用Arrhenius方程,将这些信息用于预测构建的分子在不同储存温度下的半衰期。 这三位候选分子的比较情况:•显示动力学稳定性Herceptin > Kadcyla > RC48,这与自缔合行为趋势相呼应•与Herceptin相比,Kadcyla的半衰期显著缩短,但仍在两个月左右•RC48的半衰期非常低,表明偶联方法极不稳定362°C下的等温稳定性等温稳定性是进行加速稳定性研究的另一种方法。与动力学稳定性实验类似,可以使用高温下较短时间的稳定性来推断-20°C、4°C或RT(室温)下的长期稳定性。我们可以看到候选分子的变化趋势:•根据累积半径(Cumulant radius,即纵坐标),可以明显检测到轻微的去折叠展开的变化•在62°C下800分钟(13小时以上)后,Herceptin没有明显的大小变化•两个ADC有着显著尺寸变化,RC48有着更明显的大小变化,再次表明它是所有候选分子中最不稳定的实验总结以上结果展示了除热变性试验参数外,PR Panta提供的其他多维度参数,对于预测长期稳定性是极有价值的。在早期开发和风险评估期间, PR Panta提供了关于如何选择的最佳候选药物的额外预测信息,可以用于进一步推进药物开发。并且与许多其他下游分析技术相比,PR Panta所需的样本更少,因此,从预测分析进而深入了解偶联过程对ADC的影响,PR Panta将会是研究者优先考量的选择。PR Panta蛋白稳定性分析仪(仪器价格咨询)欢迎联系我们,进一步了解PR Panta如何为您的ADC和其他生物制品提供高分辨率、高质量的数据。

应用实例

2024.06.20

玩转这5种缓冲液赋形剂让您的实验得心应手!

话题介绍什么是赋形剂?对于寻找能够稳定早期开发生物制品的缓冲液的预配方研究人员来说,缓冲液的优化不能仅局限于缓冲液的pH值和盐浓度的变化。赋形剂作为缓冲液的添加剂,即使在缓冲液优化的早期预制剂阶段,赋形剂的添加对长期稳定候选生物制剂有很大帮助,因此是制剂评估的关键因素。但每一类赋形剂都以不同的方式协助稳定生物制剂——无论是单克隆抗体还是疫苗抗原。下面跟随小编,一起来了解一些最重要的生物制剂辅料,以及它们如何提高制剂的稳定性。1. 辅助剂辅助剂能够产生更强的免疫反应,对疫苗尤其重要。他们通常是可以增强免疫反应的单独的小分子生物制剂。2. 表面活性剂表面活性剂有助于降低溶液的表面张力,使疏水分子更容易保持溶解状态。聚山梨醇酯80或聚山梨醇酯20是常见的表面活性剂。3. 氨基酸氨基酸是一种特殊的赋形剂,用于帮助稳定蛋白质分子上的自由电荷。它们是一种有助于降低带电分子之间跨蛋白质吸引力的方法,而不会使盐浓度过高。通常用于这项工作的氨基酸有精氨酸、脯氨酸、甘氨酸、组氨酸和蛋氨酸。精氨酸、脯氨酸和甘氨酸也有助于调节最终制剂的粘度。4. 糖类糖类作为是非常实用的构象稳定剂,对抗体尤其有效。它们为冻干产品提供冻干保护,并对生物分子的溶剂化具有有益的作用。蔗糖是添加到缓冲液中最常见的糖之一,但也会使用甘露醇、山梨醇和海藻糖。5. 多元醇多元醇与糖类似,是增强生物制品热稳定性的稳定分子。它们还充当“膨胀剂”以保持蛋白质的整体三维结构,这在冻干过程中尤为重要。甘油是用于增强稳定性的非常常见的多元醇,除此之外也会使用甘露醇和山梨醇。总结如何快速精准的筛选赋形剂?  如您所见,有许多不同类型的赋形剂有助于提高生物制剂的长期稳定性,从而提高其进入临床的机会。需要特别注意的是,您构建的每种治疗药物都会有不同的表现,所以针对每种候选药物,进行多种赋形剂筛选以确定哪种赋形剂能够为您的治疗药物带来最大的稳定性是至关重要的。 那么问题来了,我们到底应该如何精准且快速高效的完成海量的赋形剂筛选呢?作为实验室里必不可少的王牌仪器,拥有PR Panta蛋白稳定性分析仪无疑是非常有助于预配方领域的上游研究人员评估缓冲剂成分,以及研究如何提高其疗法稳定性的核心设备。它可以提供低检测限的多种稳定性参数、高分辨率数据均有助于加快缓冲液优化的过程。PR Panta蛋白稳定性分析仪(点击图片 查看更多)如需了解PR Panta蛋白稳定性分析仪如何协助您的候选生物制剂获得成功,欢迎联系我们获得更多信息。

应用实例

2024.06.04

Monolith互作荣登Cell:清华/南方医大团队发现降低胆固醇新激素

01研究背景在生命科学领域,肠道吸收胆固醇和肝脏合成新胆固醇之间的相互平衡对维持胆固醇的平衡至关重要,然而人们对这些过程的调节机制仍然知之甚少。本期案例研究首次发现并命名了一种肠道激素——Cholesin(肠抑脂素),并揭示了Cholesin在调控机体胆固醇稳态方面的作用和调控机制。Cholesin-GPR146信号轴介导了肠道胆固醇吸收和对肝脏胆固醇合成的抑制作用,这种新发现的激素胆固醇素有望成为防治高胆固醇血症和动脉粥样硬化的有效药物。下面,让我们一起探究这篇近期发表在Cell的优质文章吧!https://doi.org/10.1016/j.cell.2024.02.024IF: 64.5 Q102研究内容近日,清华大学生命科学学院王一国副教授和南方医科大学南方医学院张惠杰教授在国际知名期刊Cell上发表了 “A gut-derived hormone regulates cholesterol metabolism” 的论文。在此项研究中,作者选用NanoTemper公司的Monolith分子互作仪进行其中肠抑脂素受体的验证工作,MST的技术优势不负众望并发挥了重要作用。为了研究GPR146是否是Cholesin的受体,研究团队使用Monolith分子互作仪检测了Gpr146—/—在小鼠组织中Cholesin的结合情况。在Gpr146—/—小鼠的组织和原代肝细胞中,Cholesin的结合完全消失。进一步的实验证实Cholesin与GPR146的结合具有很高的亲和力。根据GPR146的保守性和预测结构,研究团队通过将6个氨基酸与丙氨酸重置生成了GPR146的突变体。与WTGPR146相比,突变体GPR146对Cholesin的亲和力明显降低,并且无法恢复GPR146—/—原代肝细胞与Cholesin的结合。所有这些体外和体内结合实验都证明GPR146是Cholesin的受体。在此验证工作的基础上,科研团队继续开展后续的实验。图1. 微量热泳动技术(MST)定量测定肠抑脂素-His与GPR146 (野生型或突变体)的结合亲和力。蓝色曲线代表的是野生型GPR146与肠抑脂素-His的结合,平衡解离常数是21.34±0.98 nM; 红色曲线代表的是突变型GPR146与肠抑脂素-His的结合。平衡解离常数是971.0±91.5 nM。03技术优势在这篇科研工作中,通过微量热泳动(MST)技术检测到野生型和突变型肠抑脂素-His对GPR146结合的验证。该技术对于分子互作亲和力的检测,Monolith系列仪器不依赖于分子量的改变,蛋白用量少,可以在溶液中表征肠抑脂素-His与GPR146的亲和力,十分有利于蛋白的结构平衡。Monolith分子互作检测仪(点击图片 查看更多)

应用实例

2024.05.30

会议回顾 | NanoTemper亮相第二十三届中国生物制品年会

5月18日,由中国疫苗行业协会、中华预防医学会生物制品分会、中国医药生物技术协会疫苗专业委员会、中国微生物学会生物制品专业委员会共同主办的第二十三届中国生物制品年会(CBioPC)在广州中国进出口商品交易会展馆D区圆满落幕。各级政府部门、监管机构、行业协会、国内外生物医药领域与科研院所的专家学者、企业代表共8000余人出席会议。此次盛会是一次行业思想的碰撞与融合,不仅拓宽了科研人员的研究思路,也为生产企业提供了行业新动向,更是为研究单位与应用单位之间搭建了交流合作的良好平台。REIVEW现场回顾本届大会邀请了生物医药领域取得突出成果并具有重要学术影响的专家学者及优秀青年科学家,围绕生物医药前沿技术设置主会场,并开设疫苗质量与研发、重组治疗性生物制品、免疫细胞、干细胞和基因治疗、创新生物制品临床研究、预防接种、血液制品、疫苗国际合作、生物制药工程技术、生物医药领域中AI的应用、生物医药数字化转型等11个分会场,组织近200场学术报告。会议期间开展了丰富多彩的学术交流、产业交流及行业交流活动,全方位展示我国生物医药前沿进展及创新性成果。NanoTemper展位风采报告间隙,许多老师及企业代表来到NanoTemper展位与我们进行技术交流。我们的技术专家在现场热心地为客户讲解技术原理及各类应用案例。研究学者们都纷纷表示想要更进一步交流实验技术问题。此次会议提供了客户与NanoTemper之间面对面沟通的平台,进一步加强了我们与客户之间的交流。最后,由衷地感谢每一位前来到访的老师,希望今后NanoTemper能够在生命科学领域助力更多生物制品研究。NanoTemper期待与您下一次再会!NanoTemper关于我们NanoTemper是全球领先的科学仪器制造商,2008年成立于德国慕尼黑,历经十余载发展,在全球13个国家设立分支机构。 NanoTemper公司作为生命科学领域的创新企业,一直致力于为药物筛选提供靶蛋白质量评估、高通量亲和力筛选等便捷的生物物理工具。卓越的产品和优质的服务使NanoTemper成为全球成千上万的制药公司、学术研究机构及科技公司的首选合作伙伴。

企业动态

2024.05.23

文献解读 | NanoTemper助力结核分枝杆菌细胞壁通路靶标膜蛋白研究

01研究背景膜蛋白生命活动中具有重要作用,也是重要的药物靶点,而膜蛋白在进行互作研究过程中会有许多难点:1.    膜蛋白一般需要去垢剂来模拟脂质生物环境。对于基于固定的互作技术,去垢剂会增加背景信号,或者存在参比通道和样品通道背景不同的可能。2.    膜蛋白结构复杂,且与配体结合后可能发生变构。因此研究互作时,膜蛋白的正确构象至关重要。基于固定的技术可能阻碍变构过程,或者在固定和再生过程中破坏膜蛋白的构象。3.    膜蛋白的表达量低、纯化难,因此需要消耗量少的方法进行检测。本期文献解读,讲述如何利用MST及nanoDSF的手段来进行膜蛋白互作研究的故事。02研究内容2024年3月15日,上海科技大学张璐研究员/饶子和院士团队在Nature Microbiology发表题为“Structural analysis of phosphoribosyltransferase-mediated cell wall precursor synthesis in Mycobacterium tuberculosis”的研究,解析结核分枝杆菌全新药物靶标——膜蛋白磷酸核糖转移酶Rv3806c与其受体底物DP和供体底物PRPP结合复合物的精细三维结构,为研究Rv3806c作为新靶点的靶向性药物研发提供了重要的理论基础。https://doi.org/10.1038/s41564-024-01643-8IF: 28.3 Q1通过对Rv3806c与供体底物PRPP复合物结构分析,推测可能影响Rv3806c结合和酶活的位点,并通过MST进行大量突变Rv3806c亲和力检测进行验证。Rv3806c为膜蛋白,并且在脂质环境中以三聚体形式组装。实验种共有10种突变体需进行Kd检测,每次实验均进行了5次重复。MST进行一次亲和力检测时,仅需32pmol、1μg的膜蛋白Rv3806c,大大节约蛋白消耗量。此外,MST技术是在溶液条件下进行,无需固定,且兼容去垢剂,使膜蛋白能保持正确的构象,甚至可以完成nanodisc或者膜提取物形式的膜蛋白亲和力检测,从而可以轻松表征膜蛋白Rv3806c多种突变体与底物PRPP的亲和力。图示:MST测定PRPP与WT-Rv3806c及突变体的结合亲和力此外,研究发现,供体底物PRPP通过一个Mg2+结合在TM螺旋束-1的空腔。为了研究Mg2+对Rv3806c结合供体底物PRPP的作用,作者使用MST和nanoDSF技术检测存在或不存在Mg2+时,Rv3806c与底物PRPP的结合。NanoDSF技术通过监测蛋白内源荧光的变化来表征蛋白结构,无需加入外源荧光染料,兼容去垢剂。使用GDN纯化的Rv3806c完成MST亲和力实验和nanoDSF的热迁移实验,结果显示Mg2+对于PRPP的结合至关重要。图示:MST分析在Mg2+存在或不存在的情况下,PRPP与Rv3806c的结合亲和力。在没有Mg2+的情况下,结合亲和力急剧下降,而在金属螯合剂EDTA的存在下,没有检测到结合。图示:在Mg2+、PRPP和EDTA存在或不存在的情况下,纯化后的Rv3806c的nanoDSF热稳定性分析。PRPP-Mg2+存在时Rv3806c表现出最高的热稳定性。03技术优势在这篇工作中,通过MST技术及nanoDSF技术,确定了膜蛋白Rv3806c与PRPP结合的关键残基,以及Mg2+在互作过程中的关键作用。对于分子互作亲和力的检测,Monolith系列仪器无需固定样品,且不限制缓冲条件,蛋白用量少,可以在溶液中表征膜蛋白与小分子的亲和力。Promethus系列仪器,以nanoDSF技术为核心,通过检测蛋白内源荧光监测蛋白的稳定性,无需外源荧光染料,兼容去垢剂,低浓度也可轻松表征,在膜蛋白稳定性分析和TSA互作定性研究上具有显著优势。-Monolith分子互作检测仪--PR Panta蛋白稳定性分析仪-

应用实例

2024.05.20

参会邀请 | NanoTemper邀您相约第二十三届中国生物制品年会

由中国疫苗行业协会主办的第二十三届中国生物制品年会(CBioPC2024)将于2024年5月15日-18日在广州举行。 大会将邀请到两院院士、国内外权威专家针对生物医药最新成果、发展趋势、政策法规进行学术报告。会议现场开设疫苗、重组治疗性生物制品、细胞治疗与基因治疗、生物药临床研究、血液制品等分论坛,邀请各级政府部门、监管机构,生物药品研发、生产和使用单位、投资机构的专家进行学术交流。会议详情时间:2024年5月15日-18日地点:广州·中国进出口商品交易会展馆D区NanoTemper展位:19.2馆Y10展位NanoTemper助力生物制品开发在生物制品的早期开发过程中,稳定性表征是一个复杂的过程,特别是在处理具有挑战性的目标,考虑因素会变得更加复杂。通常情况下,我们必须克服高样本消耗和复杂的实验设置等障碍,才能获得有效进展。 借助集合nanoDSF、DLS、背反射和SLS的四种生物物理技术的PR Panta蛋白稳定性分析仪,在不必使用大量样本的前提下可化繁为简,节省实验时间和成本并协助您完成高质量的项目检测需求。点击视频,全方位了解PR系列多参数蛋白稳定性分析仪!,时长04:51关于NanoTemperNanoTemper的愿景是致力于创造一个任何疾病都可以被治愈的世界! NanoTemper是全球领先的科学仪器制造商,2008年成立于德国慕尼黑,历经十余载发展,在全球13个国家设立分支机构。公司作为生命科学领域的创新企业,一直致力于为药物筛选提供靶蛋白质量评估、高通量亲和力筛选等便捷的生物物理工具。使用开创性的专利技术,推出了Monolith系列分子互作检测仪、Prometheus系列蛋白稳定性分析仪、Dianthus系列高通量亲和力筛选平台等,从根本上大大缩短蛋白表征的时间和样品消耗。 卓越的产品和优质的服务使NanoTemper成为全球成千上万的制药公司、学术研究机构及科技公司的首选合作伙伴。仪器展示NanoTemper 推出的Panta 多参数蛋白稳定性分析仪结合了动态光散射技术(DLS)、静态光散射技术(SLS)以及专利微量差示扫描荧光技术(nanoDSF)、背反射技术(Backreflection),首次实现了在整个热升温过程中,在单次检测中同时获得热变性、粒径和分散性、聚集以及化学变性的稳定性等数据,提供蛋白样品稳定性的全貌。NanoTemper 基于专利微量热泳动技术(MST)研发推出的 Monolith 系列-分子相互作用检测仪具有样品消耗量低、无需固定样品、检测速度快、数据精准、操作简单、免维护等独特的技术优势,可以帮助我们快速验证生物制品与靶标分子结合亲和力,以及生物制品发挥功能的机制研究。NanoTemper诚邀大家莅临Y10展位,进行技术交流和商业洽谈!

企业动态

2024.05.09

我与NanoTemper的故事(4) 厦门大学_提能增效首选MST!

T投稿作者投稿作者来自厦门大学生物医学仪器共享平台吴彩明老师,负责NanoTemper Monolith分子互作检测仪的实验设计、上机指导、数据分析和日常维护。仅仅使用Monolith半年左右,由吴彩明老师参与的高水平文献就已正式登刊,让我们一起来看看用户的真实体验吧!我们的故事初识Monolith,是在2022年的教育领域扩大投资项目中,在一长串的大型仪器论证清单中看到这台仪器。但当时对这台仪器并没有很深刻的印象,只知道它是用于检测分子间是否有相互作用,然后就没有然后了。初见Monolith,是在2023年4月的仪器安装中。NanoTemper一位外形瘦弱的年轻女工程师上门到访,说她负责安装仪器,半个小时就可以完成。我感到十分意外与惊讶....因为一般来说,大型仪器的安装都是很复杂的,调试也很繁琐,没有一两天是搞不定的,没想到这台仪器安装如此简便、如此与众不同。初用Monolith,是在2023年5月正式上线的使用。该仪器蛋白用量少,荧光标记策略多,检测速度快,这三个优点让互作实验变得简单多了。仪器的上机操作简洁明了,新手从头到尾指导一遍,基本就可以独立操作,极大地减轻我们的工作量。NanoTemper 的技术支持是一群朝气蓬勃的年轻人,充满了热情与激情。负责我校区域的售后工程师,非常及时地帮我们解决实验过程中碰到的各种问题,即使是在非工作时间,我们也总能得到回应及优化方法。当今的互作市场,群雄纷争,希望NanoTemper 发展越来越好,带给我们更多、更优、更好用的互作新技术。用户文献解读Monolith在正式装机使用后,短短半年左右的时间,就有使用MST检测数据的高水平文章见刊。厦门大学联合香港科技大学在《International Journal of Biological Macromolecules》发表题为“The N-terminal region of Cdc6 specifically recognizes human DNA G-quadruplex”的文章中,使用MST检测核酸(端粒G-四链体)与多肽(蛋白Cdc6(残基7-20))相互作用。https://doi.org/10.1016/j.ijbiomac.2024.129487IF: 8.2 Q1DNA G四链体结构在DNA复制过程中扮演着重要的调节角色。蛋白Cdc 6在DNA复制的早期阶段起着调节因子的作用。Cdc 6 N端具有一个内在无序区(IDR),该区域可以在结合DNA后驱动液-液相分离(LLPS)。但Cdc6是否识别DNA G四链体结构仍未探讨。为了确定Cdc6是否直接与G -四链体,作者通过MST实验检测发现Cdc6 N端IDR的残基7-20特异性识别G -四链体 htel21 T18  。实验时将DNA分子G -四链体 htel21 T18 进行Cy5荧光标记,加入梯度稀释的多肽分子Cdc6(残基7-20),10分钟快速获得亲和力Kd值。通过将特定位点氨基酸残基突变,MST检测到二者的相互作用消失,从而鉴定到7个关键的结合残基。图注:MST检测Cdc6(残基7-20)野生型(左)和突变体(右)与G -四链体 htel21 T18 亲和力此项研究对于深入研究DNA复制过程的调控机制具有重要的意义。NanoTemper感言感谢用户对我们产品及售后服务的肯定。科研平台不可或缺的利器-Monolith分子互作检测仪凭借出色的表现,贴合用户需求,早已成为发表高分及CNS文献必备的神器!借助仪器操作的简便性,可以快速上手进行实验操作,丰富的教学案例和资源、快速响应的售后支持服务可同时提供更多价值和有参考意义的实验灵感和思路。作为互作市场的领先者,NanoTemper将始终与客户站在一起,在生命科学的道路上携手前行,不断创新。NanoTemper分子互作检测仪器-相关文章推荐-我与NanoTemper的故事(1) 北大瞿礼嘉课题组_MST连续3年助力发表CNS_诺坦普科技(北京)有限公司 (instrument.com.cn)我与NanoTemper的故事(2) 南京农业大学_MST是检测小分子研究的不二之选!_诺坦普科技(北京)有限公司 (instrument.com.cn)我与NanoTemper的故事(3) 温州大学_MST神助力,感受实验进阶之旅!_诺坦普科技(北京)有限公司 (instrument.com.cn)

应用实例

2024.04.22

建议收藏!参考这些稳定性因素可大大降低ADCs开发过程的风险

01 / 热点解析什么是ADCs ?抗体-药物偶联物(Antibody-drug conjugates,ADCs)是一种GE MING性的治疗方法,在生物制剂市场中所占的比例越来越大。ADC结合了单克隆抗体的靶向能力(对给定抗原具有高度特异性)和小分子的药物性,这对癌症治疗可产生最大的影响。许多用于治疗癌症的小分子药物通过中止细胞转录或代谢的某些方面来发挥作用,从而杀死癌细胞。然而,细胞毒性小分子的作用遵循一个共同的原则——它们必须在杀死健康细胞之前杀死癌细胞,化疗的副作用通常是对健康细胞也有负面影响。然而,ADCs为高毒性化疗提供了另一种选择。单克隆抗体具有高特异性,仅靶向其预期抗原。由于许多癌症类型都表达癌细胞特有的受体,因此有可能将化疗小分子与癌症靶向抗体连接在一起,这种抗体直接作用于癌细胞,而且只作用于癌细胞,为下一代癌症治疗提供了真正惊人的潜力。与任何生物制剂一样,ADCs的稳定性、有效性和毒性有许多考虑因素。接下来我们来了解ADCs是如何构建的,哪些因素对其研发至关重要,以及它们如何影响其稳定性特性。02 /  组成部分ADCs是高度复杂的治疗分子 ADCs由三个部分组成。当涉及到可开发性时,需要对三部分组成进行单独考虑分析:单克隆抗体: 可能是已经存在的抗体,其相互作用的抗原已知且特征明确。或者,您可能正在开发针对新靶标抗原的抗体,或者与原始抗体具有不同的特性的抗体。小分子药物: 与单抗一样,这种小分子药物可能已经被用作独立的治疗药物,或者可能是从合成药物库中提取出来的。它也可以从片段库构建。可能需要对药物进行额外的修饰,以防止与抗体的干扰,或为Linker提供空间。Linker: Linker必须将小分子连接到抗体上,使小分子的活性部分能够接触到目标蛋白质。在构建最终ADCs时,Linker的长度、与抗体的连接方法以及释放小分子的能力是关键考虑因素。03 / 开发方法ADCs 稳定性的影响因素ADCs 开发的许多方面最终会影响其稳定性特性。可开发性分析包括评估许多关键质量属性(CQAs),以找到具有最优属性的候选药物。这次将讨论的重点是ADCs的可开发性特征,特别是构象和胶体稳定性,但值得注意的是,ADCs还有许多其他特征需要考虑。偶联过程有许多偶联的方法,这取决于linker连接的位置。偶联反应通常需要孵育30分钟到几个小时,偶联缓冲液可能对作为蛋白质的单抗来说是“苛刻”。但是,长时间的孵育会增加小分子的连接。药物引起的化学环境变化偶联程度的影响。这里有一个具体的例子可以让你更容易理解为什么这是一个重要的考虑因素:对于通过赖氨酸末端氨基连接的药物,偶联反应将发生在任何暴露在溶液中的赖氨酸和linker的活性端之间。单克隆抗体每个分子含有多达80个赖氨酸,其中许多是溶液暴露的。这意味着每个ADC分子可能是多个药物偶联一个抗体。存在药物与抗原结合区域的赖氨酸结合的风险,从而使抗体的靶向功能降低或丧失。小分子靠近抗体会改变其化学环境,从而影响其稳定性。如果小分子对抗体结构的影响太大,ADC就会展开或聚集。确保充分去除偶联后的游离药物分子。自由移动的小分子会影响ADC的构象稳定性。Linkers降低药物对抗体结构影响的一种方法是改变linker长度。Linker必须对单克隆抗体没有任何结构上的影响;此外,将其与单克隆抗体和小分子连接所需的化学物质不得破坏两者的结构或构象完整性。Linker有许多化学方面的考虑,包括确保它最终将药物释放到靶细胞中。制剂处方一旦确定了偶联方法、linker和与抗体偶联的药物,您还需要优化其缓冲制剂配方,能够稳定单克隆抗体的缓冲液用于ADC时,可能不会使单克隆抗体保持相同的稳定性。总的来说,ADCs的前景是使用两种已知的、众所周知的治疗方法——单克隆抗体和小分子药物——并将它们结合起来形成更好的治疗方法。然而,这意味着在构建治疗方法和优化其稳定性特性时,会有更多的复杂性,以便最终制造出更好的治疗方法。04/  总结构建ADCs时要考虑什么? 在开始构建ADCs时,请考虑:偶联方法:确定您将使用的偶联方法是否具有灵活性,并对替代方法进行实验单抗的稳定性:在与所需偶联反应兼容的缓冲液中配制或测试其稳定性,以确保其在偶联过程中保持活性单抗暴露于偶联条件下:如果无法优化偶联缓冲液,并且您知道缓冲液不稳定,则需要减少单抗暴露于偶联条件下Liner长度:测试linker长度;药物会改变单抗的化学环境,这将影响其稳定性05 / 相关推荐ADCs研究必备利器PR Panta蛋白稳定性分析仪(点击图片查看更多)·精准检测,数据质量非常高·无标记检测·检测浓度范围广·低样品消耗量

应用实例

2024.04.11

我与NanoTemper的故事(3) 温州大学_MST神助力,感受实验进阶之旅!

投稿作者来自温州大学--两名研究生使用Monolith仪器的感受自述,一起来看看他们的实验故事吧。我们的故事12023年10月接到课题组安排进行Monolith微量热泳动分子互作仪的原理及使用操作的相关培训,通过培训中老师的讲解和亲自上手操作,我认识了这一功能强大且精密的仪器, 并感受到了这台仪器在生物学相关科研中的实用性,及论文写作过程中借助其所做实验获得的数据图的权威性。我所在的课题组是多肽小组,课题组目前的研究方向主要是抗菌肽和多肽药物研究。众所周知,多肽的化学本质为蛋白质,在今后的相关研究中,检测蛋白质(多肽)的相互作用的实验是我将要做的实验之一。在此之前,研究蛋白质互作实验常用方法有免疫沉淀、酵母双杂交系统、免疫共沉淀、GST-Pull Down等,相较于以上四种实验方法, Monolith分子互作检测仪的优点居多,可检测各种类型分子、灵敏度高、检测范围广、不局限于两种分子间的互作分析、样品消耗极低、传递更多的实验数据及结果,检测也更加精密。 相信这台仪器会是我接下来的研究生学业生涯中非常有帮助的工具。使用过程中,我感受到NanoTemper 公司的经营及服务都是十分完善, 希望NanoTemper可以研发出更多更实用、更方便、更精密的生物学分析创新型设备及软件,推动生物学及医学领域的发展。我们的故事2药物与蛋白研究>2023年春,我得知学校有一台微量热泳动分子互作仪。当时的心情格外激动,这台仪器的出现意味着我可以检测我的药物与蛋白之间的结合程度, 从而更好的解释药物对于某些疾病的治疗具有更好的效果。由于我之前错过了学校的仪器培训课程,所以在老师的建议下,我在微信上搜索并找到了NanoTemper的公众号,开始了我的自主学习之旅。 在公众号上,从技术原理及应用开始学起,一点一点的学完所有流程。在预实验里,我和同学一起相互帮助,生怕哪里出一点岔子。幸好,实验完整的做下来了,经过这次的实验,在同学的帮助下,我发现自己在样品处理时存在一个巨大的问题,那就是我的样品蛋白浓度设置太低了,在经过调整后最终解决了这个问题,这次预实验也让我看到了胜利的曙光。真的很感谢NanoTemper公司在技术层面的创新,提供了如此简便好用的机器,为科研工作提供了极大的便利。在这里,祝愿NanoTemper 能够在今后的日子创新不止、扬帆起航,在科研仪器开发领域发光发热,做大做强。NanoTemper感言感谢用户们的信任与支持!我们非常自豪的看到越来越多的研究人员将MST技术视为多肽、药物与蛋白等小分子检测的首选工具!NanoTemper资源库小程序(可通过微信搜索)提供了完整且系统的实验培训课程和资料,可让您轻松掌握MST技术。当然,随处可查的海量权威文献也为实验思路提供了验证与参考。相信MST技术因其精准、快速的检测,极其容易上手的操作方式可以为科研人员真正的解决实验问题,节省大量时间提高效率,无疑是助力CNS上分的神器。NanoTemper 分子互作检测仪器相关推荐:我与NanoTemper的故事(1) 北大瞿礼嘉课题组_MST连续3年助力发表CNS我与NanoTemper的故事(2) 南京农业大学_MST是检测小分子不二之选!

企业动态

2024.04.02

智能・精准・创新 | 实验仪器升级必选NanoTemper!

News  近期,国务院印发《推动大规模设备更新和消费品以旧换新行动方案》。方案提出以市场为主、政府引导,鼓励先进、淘汰落后,标准引领、有序提升为总体要求,来实施设备更新行动,并强调把符合条件的设备更新、循环利用项目纳入中央预算内投资等资金支持范围。政策不仅仅是国家层面在仪器设备领域的又一重大举措,不单单是仪器设备简单的“以新替旧”,而是瞄准 “高端、智能、绿色” 科学试验仪器的新一轮大规模设备的更新。NanoTemper正积极相应此次行动方案,我们作为全球生命科学领域的领航者,作为MST微量热泳动技术的创始者、nanoDSF技术的先行者以及光谱位移技术的推动者,不断推陈出新,提供更能满足研究人员需求的产品,助力国内生命科学领域的研究发展,为实现“创造一个任何疾病都可以被治疗的世界”而不断进步。我们的技术专家会提供更多方案及信息,助您省心省力的完成设备升级申报,如有需求,欢迎致电 010-84462100 联系我们。设备升级选型,产品推荐01  Monolith分子互作仪  产品优势· 直接在溶液中检测亲和力,无需固定· 检测一个Kd仅需10min· 可在裂解液中检测亲和力,无需纯化样品· 无微流控系统,无需清洗维护02  Panta蛋白稳定性分析仪  产品优势· 单次运行同时且实时检测蛋白热变性,  粒径和聚集· 天然状态下检测,无需标记,  不受缓冲液限制· 样品消耗量低,仅需10μl· 无微流控系统,无需清洗维护03  Dianthus高通量亲和力筛选平台  产品优势· 直接在溶液中检测亲和力,无需固定· 检测一个Kd仅需1min· 标准规格384孔板,单次运行可检测32个Kd· 无微流控系统,无需清洗维护应用案例精选 -植物专题解决方案--多肽-蛋白相互作用解决方案--神经性退行疾病解决方案--PROTAC专题解决方案--抗体药物开发指南-CNS文献精选   2023年度MST技术用户案例精选2022上半年Monolith国内用户重磅文献精选2022下半年NanoTemper国内用户重磅文献精选2021年度 | MST技术精选文章分享2020年度 | MST技术精选文章分享盘点使用PR蛋白稳定性分析仪发布的国内外文献PR蛋白稳定性分析仪-助力国内外CNS文献列表更新用户评价节选 (点击查看) 探访中国农业大学_植物应答盐碱胁迫的分子机制北大瞿礼嘉课题组_MST连续3年助力发表CNS南京农业大学_MST是检测小分子研究的不二之选!CONTACT US电话:010-84462100https://nanotempertech.com

企业动态

2024.03.21

案例解读 | 子宫液代谢组分析,开发卵巢癌早期诊断新方法

01研究背景生命的代谢是一个永不停息的过程。任何疾病的发生和发展都会影响人体代谢,进而导致体液中代谢物质发生显著变化。分析代谢物对机体的影响以及寻找疾病的生物标志物是疾病研究中的重要研究方向。然而,代谢物的分子量一般都非常小,只有几百道尔顿。在进行研究代谢物和目标蛋白的互作时,常常由于代谢物分子量太小,无法获得信噪比高的结果。下面的案例为大家带来2023年北京大学第三医院郭红艳/李默团队发表在《Cell Heliyon》文章,他们使用MST技术成功检测了靶标蛋白和代谢物的互作,以及代谢物与疾病关系。02案例解读doi.org/10.1016/j.xcrm.2023.101061IF: 14.3 Q1 研究内容由于早期诊断的生物标志物无效,卵巢癌(OC)在女性群体中死亡率高,因此迫切需要探索准确和实用的策略来早期发现OC。作者以子宫液为研究材料,对96名妇科患者的子宫液进行代谢组学分析。建立7种代谢物标记panel,用于检测早期OC。同时发现过量的4-羟雌二醇(4-OHE2)影响机体正常代谢,并且促进肿瘤发生。结果作者研究发现,在大多数OC细胞中,去甲肾上腺素(NE)和4-羟雌二醇(4-OHE2)升高,考虑到儿茶酚-O-甲基转移酶(COMT)代谢NE和4-OHE2的双重作用,作者假设OC细胞中的4-OHE2可能与NE竞争。为了验证这种猜想,需要检测COMT对对4-OHE2和NE的相互作用。4-OHE2和NE的分子量分别仅有288D和169D,常规基于分子量变化的亲和力检测方法很难获得信噪比高得结果。MST不依赖分子量的变化,即使小至离子也可获得准确Kd。文中作用使用MST检测到4-OHE2对COMT的结合亲和力比NE对COMT的结合亲和力更强,见下图。结合细胞水平实验确定过量4-OHE2拮抗COMT对NE的分解代谢。此外,暴露于4-OHE2可诱导细胞DNA损伤和基因组不稳定,从而导致肿瘤发生。图注:MST检测COMT与NE和4-OHE2亲和力该研究不仅揭示了不同类型妇科疾病患者的子宫液代谢物特征,还为卵巢癌患者提供了一个无创的早诊早治新策略。03产品技术优势MST进行亲和力检测不依赖于分子量,因此,即使分子量非常小的代谢物也可以轻松完成互作检测。此外,MST对互作buffer不做要求,即使代谢物为酸性/碱性/粘稠等不同性质,亲和力检测的结果也不受影响。Monolith分子互作检测仪

应用实例

2024.03.07

我与NanoTemper的故事(2) 南京农业大学_MST是检测小分子研究的不二之选!

投稿作者:南京农业⼤学草业学院作者自述:我是来⾃于南京农业⼤学草业学院的一名博士生,研究⽅向是苜蓿耐寒分⼦调控机制的解析,主要研究⼀个编码类钙调蛋⽩的基因,我们的猜想是这个类钙调蛋⽩可能会与 Ca2+结合。我们的故事鉴于上述研究课题的相关猜想,因此我们需要设计⼀个实验去验证下这个蛋⽩能否结合 Ca2+, 以及 Ca2+能否促进它与其互作蛋⽩的结合。通过查阅这种蛋⽩与蛋⽩或⼩分⼦物质结合的⽂献,我们发现MST实验⾮常适合我们,⼗分巧合的是,南京农业⼤学国家重点实验室正好引进了NanoTemper分子互作检测仪器,并且也正好有相应的讲座,之后我们便开始着⼿准备相应的试剂和耗材等筹备工作。通过国家重点实验室⽼师的指点以及操作平台上⾃带的教学视频和产品操作⼿册,我们购买了荧光标记试剂盒(图左)和上机使⽤的⽑细管(图右)尽管第⼀次尝试新的实验,但是荧光标记试剂盒中提供的详细操作步骤和注意事项让我熟练完成我的⽬标蛋⽩标记,并且通过上机检测和稀释等操作,将荧光采集强度控制在⼀个可视的范围 (图 A, B)在实验过程中,我们遇到了⼀些曲线不光滑问题 (图 上A),通过仔细查看培训时曾在群⾥分享过的操作⼿册,⼀下就找到了问题所在,是因为我的样品在测定过程中出现了团聚,因此之后我们在样品中混⼊了适量的吐温后立马就解决了问题,实验结合得到了很好的改善 (图 下B),至此成功使⽤NanoTemper微量热泳动分⼦相互作⽤系统验证我的实验。未来,希望NanoTemper发展越来越好,在⽣命科学等领域出更多产品和技术,为全世界发展做出巨⼤贡献。NanoTemper感言感谢用户的信任与支持!我们非常自豪的看到越来越多的研究人员将MST技术视为蛋白与蛋白,蛋白与小分子检测的首选工具,除了有海量的文献可以参考,也是因为MST技术其精准、快速的检测,极其容易上手的操作方式可以为科研人员真正的解决实验问题,节省大量时间提高效率,无疑是助力CNS上分的神器。NanoTemper分子互作检测仪器NanoTemper将始终与客户站在一起,在生命科学的道路上携手前行,不断创新。我们也会为广大用户带来更多的实用的技术与福利!相关阅读:我与NanoTemper的故事(1) 北大瞿礼嘉课题组_MST连续3年助力发表CNS_诺坦普科技(北京)有限公司 (instrument.com.cn)

企业动态

2024.02.29

重磅!NanoTemper 年度MST技术用户案例精选

不知不觉已步入2024年,NanoTemper很荣幸又陪伴用户度过了充实又有意义的一年。2023年NanoTemper的用户使用MST技术发表的文章超过2000篇,其中也有不少文章发表在Cell、Nature、Science三大主刊,非常感谢用户对我们的信任。MST微量热泳动技术能够弥补传统的互作技术在高样品消耗、小分子检测以及操作繁琐等方面的不足,能够轻松高效地检测各类具有挑战的样品,因而快速地被应用在各种领域。下面是我们的技术专家们精心挑选的9篇高分文献,为大家解读MST技术是如何在四个不同应用方向助力科学研究的。_小分子在进行小分子亲和力检测时,您可能会遇到样品分子量低或与目标蛋白分子量差异大导致检测信噪比低,实验难优化的问题。MST技术检测不依赖于分子量变化,结合引起的电荷或构象改变同样会被灵敏感应到。中国医学科学院 | 小分子抑制 α-synuclein 聚集帕金森病(PD)的病理表现是α-synuclein的聚集,α-synuclein 被认为是治疗帕金森病的一个潜在靶点。中药天麻中联苯苄型化合物20C,可显著增强PD模型的细胞活力,可能是天麻治疗PD的重要生物活性成分。然而,其作用靶点和作用机制尚不清楚。今年中国医学科学院药物研究所发表在Cell Death and Disease的研究结果发现,小分子20C可抑制α-synuclein 聚集并阻止PD的进展,并且明确了这些改善是来自20C和α-Syn fibrils的直接互作。α-Syn fiber是由α-Syn单体组装而成的大聚集体,分子量超过420kD,而20C为小分子,二者之间分子量倍数差别在几百倍以上,很难通过基于分子量变化方法进行互作亲和力检测。作者使用MST技术检测了 α-Syn fibrils 与20C的互作(Kd为37μM),证明二者之间存在直接互作。图1. 使用MST测定20C与α-Syn fibrils直接相互作用https://doi.org/10.1038/s41419-023-06116-0IF: 9.0 Q1第二军医大学 | 黄芪甲苷衍生物治疗梗死后心衰的作用和机制来自第二军医大学以及中国医学科学院药用植物研究所的张卫东团队在Signal Transduction and Targeted Therapy杂志上撰文,报道了黄芪甲苷优化衍生物HHQ16通过直接作用于心肌细胞逆转肥厚,有效地逆转了心肌梗死诱导的心肌重构,并改善了心功能。研究者对一个新发现的人类 lncRNA(Lnc4012) 及其小鼠同源基因(Lnc9456)进行了全面的鉴定,并对lnc4012/lnc9456在心肌梗死诱导的心肌肥大和心力衰竭的发生发展中的作用提供了新的机制见解,并证明lnc4012/lnc9456是一种新的真正的靶点。在研究过程中,研究者通过病理及药理实验确定了lnc9456为HHQ16逆转肥厚和心衰的特异性靶点,并通过MST实验验证了HHQ16与lnc9456具有高亲和力结合,但与抗肥大lncRNA Mhrt无亲和力(图2)。这表明了HHQ16与lnc9456特异性结合,导致其降解的药效机制。图2. MST检测HHQ16与lnc9456(左)及阴性对照(右)亲和力小鼠lnc9456和人lnc4012分子机制具有一致性。HHQ16与lnc4012的亲和力高于其小鼠同源基因lnc9456(图3),并以时间依赖的方式促进体外转录的lnc4012降解。研究者利用MST技术验证了新的小分子HHQ16会与lnc4012/lnc9456特异性结合。而HHQ16与lnc4012/lnc9456的结合会导致其降解,从而拮抗其对心肌细胞G3BP2/NF-κB信号的作用,从而有效地逆转心肌梗死引起的肥厚和心力衰竭。图3. MST检测HHQ16与lnc4012(左)亲和力https://doi.org/10.1038/s41392-023-01660-9IF: 39.3 Q1福建农林大学 | 细胞膜共受体复合体传递生长素信号的分子机制2023年11月,福建农林大学徐通达团队和杨贞标团队在Cell期刊在线发表题为 “ABLs and TMKs are co-receptors for extracellular auxin” 的研究论文,报道了两个新的质外体定位的生长素结合蛋白, ABL1(ABP1-like protein 1)和ABL2,其与生长素结合蛋白ABP1具有相似结构,在细胞膜上形成ABP1/ABLs-TMK生长素共受体感受并传递胞外生长素信号,调控植物生长和发育的分子机制。研究者首先构建了拟南芥ABP1生长素结合位点突变形式的ABP1-5转基因植株,表型分析发现其与tmk突变体类似,呈现明显的生长发育和生长素快速响应缺陷,暗示ABP1-5蛋白可能通过对其他质外体定位的,生长素结合蛋白产生显性负效应,参与TMK介导的生长素信号通路。由于ABP1没有同源基因,为了寻找其他的生长素结合蛋白,研究者通过检索TMK1互作蛋白质组学数据库,鉴定到两个新的生长素结合蛋白,其与ABP1氨基酸序列相似性偏低,但结构类似,且具有高度保守的生长素结合区域,将其命名为ABL1(ABP1-like protein 1)和ABL2。通过生化分析,发现ABL1蛋白定位于质外体,与ABP1类似,研究者提出了科学假设--细胞膜ABLs-TMK蛋白复合体感知并传递胞外生长素信号。表型分析发现:ABL1/2与ABP1的功能具有冗余性,但又有别于ABP1,差异性调控植物的生长发育;ABL1/2与ABP1都通过协同TMK家族,介导生长素的快速响应。作者进一步通过微量热泳动技术(MST)分析发现:与ABP1类似,ABL1和TMK1胞外域都能特异性的结合IAA(图4)和NAA等活性形式的生长素分子。有趣的是,当TMK1胞外域存在的情况下,ABP1和ABL1对生长素的结合能力显著增强(图4,ABP1:4.71uM、ABP1/TMK1-ex:0.094uM; ABL1: 1.73uM、ABL1/TMK1-ex: 0.525uM),这表明了ABP1/ABLs和TMK在结合生长素方面存在协同作用。图4. MST检测IAA与ABP1, ABL1, TMK1-ex, ABP1-5, and ABL1-M2结合https://doi.org/10.1016/j.cell.2023.10.017IF: 64.5 Q1_多肽由于多肽较强的极性偏好,使用其他固定性技术进行多肽亲和力检测过程中,常常遇到黏附的问题,并且很难优化解决。MST检测无需固定样品,直接在溶液中进行亲和力检测,可以避免多肽吸附至固相上的问题。北京大学 | 植物通过有性生殖实现远缘杂交的新机制2023年10月7日,北京大学生命科学学院、北大-清华生命科学联合中心、新基石科学实验室瞿礼嘉/钟声团队在Cell上发表了题为“Antagonistic RALF peptides control an intergeneric hybridization barrier on Brassicaceae stigmas”的论文,提出的柱头-花粉间识别的“锁-钥模型”,阐明了柱头处的种间/属间生殖障碍形成的机理,解释了“花粉蒙导效应”。作者研究发现柱头的乳突细胞表面的受体FER/ANJ/HERK1/CVY1与乳突细胞自分泌小肽sRALF33等组分协作构建成"锁",阻止花粉管穿入柱头。自己的花粉以及近缘植物种的花粉携带的7个旁分泌小肽pRALF11/26等即为"钥匙",该“钥匙”打开柱头处的"锁",使得花粉管可以穿入柱头。在研究过程中,作者使用MST技术验证并定量了受体FER/ANJ/HERK1/CVY1与自身分泌的小肽sRALF33以及花粉分泌的小肽pRALF11/26的互作。这也是瞿礼嘉/钟声团队继2017年Science和2022年Science后第三次用MST检测蛋白和多肽的亲和力。在该互作研究中,涉及到3种小肽,共12组的Kd检测,MST检测一对Kd仅需要 200nM 100uL 的蛋白样品,即使进行多组实验,也仅需要非常少量的蛋白样品。MST结果显示,选定的sRALF33、pRALF11或pRALF26分别可以与FER、CVY1、ANJ和HERK1相互作用,并具有高亲和力。图5. sR33、pR11和pR26与FER (E)、CVY1 (F)、ANJ (G)和HERK1 (H)的外结构域具有较高的结合亲和性,而与elf24(阴性对照)的结合亲和性不高https://doi.org/10.1016/j.cell.2023.09.003IF: 64.5 Q1浙江大学|蛋白质脂化修饰研究2023年8月,浙江大学生研院林世贤课题组在 Nature Chemical Biology杂志发表了题为“Computational design and genetic incorporation of lipidation mimics in living cells”的研究成果,报告了一种设计脂化模拟的计算方法。研究团队建立了一个工程系统,用于将这些脂化模拟物整合到大肠杆菌和哺乳动物细胞中几乎任何所需的蛋白质位置。这项研究策略能够实现数百种蛋白质脂化的功能获得研究,促进了卓越治疗候选药物的创造。在该研究中,为了证明基因编码脂质模拟物在设计和合成治疗候选药物中的效用,研究人员使用MST技术检测了人血清白蛋白HSA和脂质模拟改造的多肽药物GLP-1变体之间的相互作用。GLP-1-K20-4HexyF和GLP-1-K20-4OctyF对HSA的Kd值分别为 2.31 μM和0.58 μM,分别比GLP-1-K20-HepoK的15 μM增加了6.5倍和25.9倍。相比之下,野生型(WT) GLP-1未检测到结合,表明增强的结合是由脂质模拟介导的。图6. MST分析多肽药物GLP-1变体对人血清白蛋白HSA的亲和力https://doi.org/10.1038/s41589-023-01400-8IF: 14.8 Q1_免纯化检测亲和力检测一般需要高质量和纯度的蛋白,而一些蛋白本身很难纯化。MST技术可以直接在裂解液中进行亲和力测定,特别适合难纯化,或纯化后不稳定的蛋白样品,为科研人员节省样品和时间。武汉大学中南医院 | 膀胱癌发生发展机制武汉大学中南医院、武汉大学医学研究院王行环团队此前的研究显示POLD1是膀胱癌恶性转变过程中的一个关键分子。在此基础上,王行环团队证实POLD1在膀胱癌组织中较癌旁组织高表达,在肌层浸润性膀胱癌中较非肌层浸润性膀胱癌高表达,且与预后相关。团队在体内和体外实验中证明了POLD1能够促进膀胱癌的增殖和转移,并在进一步机制研究中发现,POLD1通过与FBXW7竞争性结合MYC,从而减弱FBXW7介导的MYC泛素化降解。此外,机制研究还发现POLD1可以与MYC形成复合物参与MYC的转录调控,增强MYC的转录活性;另一方面,MYC能够转录激活POLD1,从而形成了一个POLD1-MYC正反馈回路,增强了对膀胱癌的促癌作用(图7)。这项研究成果于2023年发表在 Nature Communications 杂志。图7. POLD1通过稳定MYC调节BLCA的增殖和转移,促进膀胱癌发生发展研究人员首先通过CO-IP验证了POLD1与MYC的结合,而当去掉MYC中与FBXW7α结合的区域MB1后,就检测不到结合了。因此研究团队合成了MB1肽段,然后使用MST技术检测了POLD1与MB1肽之间的亲和力,并与 FBXW7α作对比,证明POLD1对MB1的亲和力比FBXW7α强,因此它可以与FBXW7α竞争结合MYC(图8)。在这个实验中,POLD1和FBXW7α 也都是与GFP融合表达在293T细胞,直接使用细胞裂解液作为target进行检测,无需纯化蛋白。图8. MST技术检测293T细胞中过表达GFP-POLD1的裂解物与MYC-MB1 (WT)肽的结合亲和力https://doi.org/10.1038/s41467-023-38160-xIF: 16.6 Q1_核酸您可以使用带有CY5标记的核酸直接在溶液中进行亲和力检测,实验操作简便且检测一对样品仅需10min,无需担心RNA在检测过程中降解。Scripps研究所 | 靶向RNA降解剂2023年5月24日,Scripps研究所的Matthew D. Disney教授及其合作者在Nature杂志发表了题为“Programming inactive RNA-binding small molecules into bioactive degraders”的研究论文,利用核糖核酸酶靶向嵌合体技术将非活性小分子重编程为靶向RNA降解剂,成功降解miR-155和癌症靶标MYC、JUN的RNA。研究人员基于二维组合筛选进行RNA和小分子高通量分子间相互作用检测,发现了一些可以与pre-miRNA-155结合的小分子。研究人员接下来使用Monolith分子互作仪完成了大量RNA小分子结合表征,验证了C1仅结合于5′GAU/3′C_A motif,其他RNA凸起或者点突变RNA在相同检测浓度范围内看不到明显的结合信号。图9. pre-miR-155-binder C1结合曲线小分子结合于pre-miRNA-155的非活性位点,并不会对细胞内的miRNA-155表达水平产生影响。接下来研究人员构建了双功能小分子核糖核酸酶靶向嵌合体,一端与目标RNA结合,另一端招募并激活RNA酶,从而靶向降解目标RNA。改造后的嵌合体成功在细胞内降低miRNA-155的表达水平,并且在细胞和小鼠模型中抑制了三阴乳腺癌。图10. 将结合pre-miR-155的惰性结合物转化为活性RIBOTAC降解剂为了测试该方法的适用性,研究人员又构建了靶向MYC和JUN的核糖核酸酶靶向嵌合体。这两种蛋白都是重要的癌症靶点,但都是无序蛋白,被认为是不可成药的。改造后的核糖核酸酶靶向嵌合体获得了生物活性并在细胞内精准地靶向降解各自的靶向RNA,使这些癌蛋白驱动的转录和蛋白组学进程失效。这项研究表明对于由这些常见但具有挑战性的致癌基因驱动的癌症,重编程非活性小分子为靶向RNA降解剂可能会带来新的变革。https://doi.org/10.1038/s41586-023-06091-8IF: 64.8 Q1北京大学 | 新型RNA编辑系统开发2023年北京大学药学院汤新景教授开发出一种新颖且便捷的光触发位点特异性RNA编辑系统,并将研究成果发表在Cell Chemical Biology上。为了开发内源性ADAR蛋白的A-to-I可控的编辑策略,作者设计了一种末端有胆固醇修饰的反义寡核苷酸(3’-笼式arASO):由一段2’-OMe修饰的可编程反义域、用于与靶mRNA杂交的硫代磷酸修饰的3’端和位于5’端的用于招募ADAR蛋白的工程化GluR2 R/G基序组成,这种设计能通过招募内源性的ADAR蛋白来实现位点特异性的RNA A-to-I编辑。并且,作者通过2D细胞和3D肿瘤球的实验验证了3’-笼式arASO在的光触发A-to-I编辑能力。为了研究3’-笼式arASO抑制位点特异性的机制,作者使用MST技术检测了3’-笼式arASO与蛋白和核酸的互作:ADAR1-p150是主要的RNA单碱基编辑器。MST技术确定了3’-笼式arASO与ADAR1-p150的结合亲和力与arASO与ADAR1-p150蛋白的亲和力接近,表明胆固醇修饰并不会对其在5’端的ADAR-招募结构域造成明显影响。图11. MST技术检测ADAR1-p150与3’-笼式arASO/arASO亲和力MST技术检测3’-笼式arASO与不配对的腺苷的单链靶RNA(ssRNA)的结合亲和力检测结果表明:3’-笼式arASO在没有光刺激的情况下与ssRNA(A·C错配)的结合亲和力比其阳性对照的结合亲和力低17.4倍,但在给予光照后,其亲和力恢复到与阳性对照组相当的水平(左图)。这表明,在3’-笼式arASO的反义结合域3’端的胆固醇修饰阻断了其与ssRNA(A·C错配)的结合。而胆固醇修饰对arASO与完全配对的ssRNA的结合亲和力没有影响(右图)。图12. 胆固醇修饰阻断了3’-笼式arASO与靶RNA的结合从而抑制其位点特异性编辑https://doi.org/10.1016/j.chembiol.2023.05.006IF: 8.6 Q1中国农业大学 | 核受体转录调节的底物选择和活性抑制新机制睾丸核受体4 (TR4)调节基因的转录激活,在许多疾病中发挥重要作用。TR4对靶基因的调控涉及通过DNA结合域(DBD)与DNA分子的直接相互作用。然而,TR4与靶基因之间特异性的相互选择性机制不清楚。2023年中国农业大学陈忠周教授课题组在Nucleic Acids Research在线发表了题为 Structures of human TR4LBD-JAZF1 and TR4DBD-DNA complexes reveal the molecular basis of transcriptional regulation 的研究论文,解析了TR4-DBD - DNA复合物的高分辨率晶体结构,并通过MST技术进行了大量的亲和力检测实验,详细阐述了TR4与dsDNA相互作用以及选择性。通过对TR4-DBD - DNA复合物晶体结构分析,第129、138等残基起到结合的关键作用,作者生成了不同的TR4DBD的位点突变体,通过MST实验确定突变后TR4与DNA的亲和力大小(图13)。Y129A、K138A、K142A、R143A和R146A突变对结合的破坏最为明显,其他突变也在不同程度上削弱了二者的互作。图13. MST检测TR4不同突变体与DNA亲和力为了验证TR4的转录调控功能,作者分析了一些下游靶基因的潜在启动子序列,并通过MST实验确定了TR4在每个靶序列上的Kd值。TR4结合了这些靶基因的每个启动子,并且结合亲和力随序列的不同而不同(图14),表明结合亲和力的差异可能与dsDNA结合位点的序列特征有关。图14. MST检测TR4与不同靶序列亲和力晶体结构分析表明,DNA含有两个重复的AGGTCA基序,与两个DBD分子形成异三聚体复合体。为了确定AGGTCA中的最佳基序,作者构建具有相同位点突变的dsDNAs,并进行了MST实验。亲和力结果表明,A1G2G3T4C5A6位点替换G2和T4对结合影响最明显,结合亲和力降低了百倍(图15),说明G2G3T4C5对TR4结合的靶基因至关重要,推断序列PuGGTCA是TR4的最佳目标基序。图15. MST检测不同突变dsDNA和TR4亲和力https://doi.org/10.1093/nar/gkac1259IF: 14.9 Q1_参考文献1. Peng, Y. et al. A small molecule 20C from Gastrodia elata inhibits α-synuclein aggregation and prevents progression of Parkinson’s disease. Cell Death and Disease 14, (2023).2. Wan, J. et al. Astragaloside IV derivative HHQ16 ameliorates infarction-induced hypertrophy and heart failure through degradation of lncRNA4012/9456. Signal Transduction and Targeted Therapy 8, (2023).3. Yu, Y. et al. ABLs and TMKs are co-receptors for extracellular auxin. Cell (2023) doi:https://doi.org/10.1016/j.cell.2023.10.017IF: 64.5 Q1 .4. Lan, Z. et al. Antagonistic RALF peptides control an intergeneric hybridization barrier on Brassicaceae stigmas. Cell (2023) doi:https://doi.org/10.1016/j.cell.2023.09.003IF: 64.5 Q1 .5. Ding, W. et al. Computational design and genetic incorporation of lipidation mimics in living cells. Nature Chemical Biology 1–10 (2023) doi:https://doi.org/10.1038/s41589-023-01400-8IF: 14.8 Q1 .6. Wang, Y. et al. DNA polymerase POLD1 promotes proliferation and metastasis of bladder cancer by stabilizing MYC. Nature Communications 14, 2421 (2023).7. Tong, Y. et al. Programming inactive RNA-binding small molecules into bioactive degraders. Nature 618, 169–179 (2023).8. Zhang, Y. et al. Light-triggered site-directed RNA editing by endogenous ADAR1 with photolabile guide RNA. PubMed 30, 672-682.e5 (2023).9. Liu, Y. et al. Structures of human TR4LBD–JAZF1 and TR4DBD–DNA complexes reveal the molecular basis of transcriptional regulation. Nucleic Acids Research 51, 1443–1457 (2023).Monolith系列分子互作仪覆盖几乎任何分子类型、缓冲液成分或亲和力强弱的检测项目,并且检测不依赖于分子量,能够轻松应对不同类型的分子间相互作用检测难题。由于篇幅有限,小编先分享这些。如果您还想阅读更多精彩文章和应用案例,欢迎给我们后台留言,我们会第一时间联系到您哦!希望2024年MST技术依旧能够在分子互作检测上大放异彩,在各个领域助力科研学者取得成功!_小分子在进行小分子亲和力检测时,您可能会遇到样品分子量低或与目标蛋白分子量差异大导致检测信噪比低,实验难优化的问题。MST技术检测不依赖于分子量变化,结合引起的电荷或构象改变同样会被灵敏感应到。中国医学科学院 | 小分子抑制 α-synuclein 聚集帕金森病(PD)的病理表现是α-synuclein的聚集,α-synuclein 被认为是治疗帕金森病的一个潜在靶点。中药天麻中联苯苄型化合物20C,可显著增强PD模型的细胞活力,可能是天麻治疗PD的重要生物活性成分。然而,其作用靶点和作用机制尚不清楚。今年中国医学科学院药物研究所发表在Cell Death and Disease的研究结果发现,小分子20C可抑制α-synuclein 聚集并阻止PD的进展,并且明确了这些改善是来自20C和α-Syn fibrils的直接互作。α-Syn fiber是由α-Syn单体组装而成的大聚集体,分子量超过420kD,而20C为小分子,二者之间分子量倍数差别在几百倍以上,很难通过基于分子量变化方法进行互作亲和力检测。作者使用MST技术检测了 α-Syn fibrils 与20C的互作(Kd为37μM),证明二者之间存在直接互作。图1. 使用MST测定20C与α-Syn fibrils直接相互作用https://doi.org/10.1038/s41419-023-06116-0IF: 9.0 Q1第二军医大学 | 黄芪甲苷衍生物治疗梗死后心衰的作用和机制来自第二军医大学以及中国医学科学院药用植物研究所的张卫东团队在Signal Transduction and Targeted Therapy杂志上撰文,报道了黄芪甲苷优化衍生物HHQ16通过直接作用于心肌细胞逆转肥厚,有效地逆转了心肌梗死诱导的心肌重构,并改善了心功能。研究者对一个新发现的人类 lncRNA(Lnc4012) 及其小鼠同源基因(Lnc9456)进行了全面的鉴定,并对lnc4012/lnc9456在心肌梗死诱导的心肌肥大和心力衰竭的发生发展中的作用提供了新的机制见解,并证明lnc4012/lnc9456是一种新的真正的靶点。在研究过程中,研究者通过病理及药理实验确定了lnc9456为HHQ16逆转肥厚和心衰的特异性靶点,并通过MST实验验证了HHQ16与lnc9456具有高亲和力结合,但与抗肥大lncRNA Mhrt无亲和力(图2)。这表明了HHQ16与lnc9456特异性结合,导致其降解的药效机制。图2. MST检测HHQ16与lnc9456(左)及阴性对照(右)亲和力小鼠lnc9456和人lnc4012分子机制具有一致性。HHQ16与lnc4012的亲和力高于其小鼠同源基因lnc9456(图3),并以时间依赖的方式促进体外转录的lnc4012降解。研究者利用MST技术验证了新的小分子HHQ16会与lnc4012/lnc9456特异性结合。而HHQ16与lnc4012/lnc9456的结合会导致其降解,从而拮抗其对心肌细胞G3BP2/NF-κB信号的作用,从而有效地逆转心肌梗死引起的肥厚和心力衰竭。图3. MST检测HHQ16与lnc4012(左)亲和力https://doi.org/10.1038/s41392-023-01660-9IF: 39.3 Q1福建农林大学 | 细胞膜共受体复合体传递生长素信号的分子机制2023年11月,福建农林大学徐通达团队和杨贞标团队在Cell期刊在线发表题为 “ABLs and TMKs are co-receptors for extracellular auxin” 的研究论文,报道了两个新的质外体定位的生长素结合蛋白, ABL1(ABP1-like protein 1)和ABL2,其与生长素结合蛋白ABP1具有相似结构,在细胞膜上形成ABP1/ABLs-TMK生长素共受体感受并传递胞外生长素信号,调控植物生长和发育的分子机制。研究者首先构建了拟南芥ABP1生长素结合位点突变形式的ABP1-5转基因植株,表型分析发现其与tmk突变体类似,呈现明显的生长发育和生长素快速响应缺陷,暗示ABP1-5蛋白可能通过对其他质外体定位的,生长素结合蛋白产生显性负效应,参与TMK介导的生长素信号通路。由于ABP1没有同源基因,为了寻找其他的生长素结合蛋白,研究者通过检索TMK1互作蛋白质组学数据库,鉴定到两个新的生长素结合蛋白,其与ABP1氨基酸序列相似性偏低,但结构类似,且具有高度保守的生长素结合区域,将其命名为ABL1(ABP1-like protein 1)和ABL2。通过生化分析,发现ABL1蛋白定位于质外体,与ABP1类似,研究者提出了科学假设--细胞膜ABLs-TMK蛋白复合体感知并传递胞外生长素信号。表型分析发现:ABL1/2与ABP1的功能具有冗余性,但又有别于ABP1,差异性调控植物的生长发育;ABL1/2与ABP1都通过协同TMK家族,介导生长素的快速响应。作者进一步通过微量热泳动技术(MST)分析发现:与ABP1类似,ABL1和TMK1胞外域都能特异性的结合IAA(图4)和NAA等活性形式的生长素分子。有趣的是,当TMK1胞外域存在的情况下,ABP1和ABL1对生长素的结合能力显著增强(图4,ABP1:4.71uM、ABP1/TMK1-ex:0.094uM; ABL1: 1.73uM、ABL1/TMK1-ex: 0.525uM),这表明了ABP1/ABLs和TMK在结合生长素方面存在协同作用。图4. MST检测IAA与ABP1, ABL1, TMK1-ex, ABP1-5, and ABL1-M2结合https://doi.org/10.1016/j.cell.2023.10.017IF: 64.5 Q1______

应用实例

2024.01.26

又一篇nature!Panta助力精子特异性溶质载体SLC9C1的结构解析

01研究背景SLC9C1是精子中特异的溶质载体,属于阳离子/质子逆向转运蛋白SLC9超家族,其表达与精子数量和活力直接相关。SLC9C1包含运输结构域(TD),电压感应结构域 (VSD)和环核苷酸结合结构域 (CNBD)。VSD感知的膜电压如何激活转运体中的离子交换机制一直不清楚。来自海德堡大学的Cristina Paulino课题组在Nature上发表了题为“Structures of a sperm-specific solute carrier gated by voltage and cAMP”的文章,解析海胆SLC9C1的结构,并揭示了三个功能域是如何耦合。文中使用NanoTemper Panta分析配体对SLC9C1的构象的影响。02案例解读https://doi.org/10.1038/s41586-023-06629-wSpSLC9C1以同二聚体的形式组装,通过结构解析,作者明确识别SpSLC9C1不同的结构域:TD、VSD和CTD(包括CNBS和CH1-9)。图1:SpSLC9C1在序列水平上的结构域排列环核苷酸可以使得SLC9C1在静息电位激活,cAMP的激活效果比cGMP高。作者又解析了SLC9C1在cAMP与cGMP存在的情况下的结构(图2A)。发现结合cAMP的SLC9C1结构有很高的构象异质性,特别是CTD。分析发现cAMP破坏了β-CTD之间的二聚体相互作用,导致CTD偏离对称轴。为了进一步表征cGMP和cAMP结合对SpSLC9C1的影响,作者分析分离的CTD (S946-E1193, CNBD和β-CTD) 在加入cAMP和cGMP后Tm的变化。从结构信息来看,cGMP的加入未引起SLC9C1构象上明显改变,对应的ΔTm变化可能很小。因此,需要一种高精度和重复性的方法进行检测。nanoDSF技术检测Tm精度为±0.1℃,避免重复性差造成的假阴性问题。实验时,无需加入染料,也不存在染料分子造成的不兼容或者对蛋白的其他影响。nanoDSF检测显示,环核苷酸诱导CTD的热稳定性增加,其中cAMP产生6°C的位移,而cGMP仅观察到2°C,结果证实了cAMP对SpSLC9C1有较高的增强作用。图2:A.加入cGMP和cAMP后SpSLC9C1 -CTD结构;B.Panta nanoDSF模块检测SpSLC9C1 -CTD(蓝色)以及加入cGMP(紫色)和cAMP(橙色)后Tm综上,cAMP结合在CNBD结构域后也可以破坏β-CTD的相互作用,使其可以在更接近静息电位下被激活,进而进行钠/氢交换,揭示了SLC9C1电压调节与cAMP调节的钠/氢交换机制。03产品技术优势Panta nanoDSF模块具有极高数据重复性和准确性,确保您获得准确的Tm值。实验时无需加入染料,操作简单的同时,保证了实验结果。此外,Panta整合了DLS、SLS、背反射和nanoDSF四大检测模块,只需一份样品,便可以获得多种稳定性参数。PR Panta蛋白稳定性分析仪

应用实例

2024.01.26

NanoTemper案例分享 | MST解析RAS/RAF复合物结构,提供KRAS抑制剂开发新思路

研究背景RAF激酶家族是 RAS-RAF-MEK-ERK 信号级联(MAPK信号)的核心组成部分,可传导细胞增殖、分化等信号。RAF在细胞质中保持自我抑制状态,并通过活化的RAS募集到质膜,被激活后进行信号传递。该信号通路异常通常会导致癌症发生。尽管对KRAS/RAF识别有比较详细的了解,但这种相互作用如何导致RAF激活仍不清楚。研究中涉及到不同激活状态的RAF复合物和RAS结合,互作体系中将含有到3个及以上的分子,传统的方法很难获得准确互作结果。这次我们带来的这篇文献讲述美国丹娜-法伯癌症研究所的工作人员使用MST技术来解析RAF蛋白激活和与RAS互作的关系。https://doi.org/10.1038/s41467-023-40299-6IF: 16.6 Q1研究内容先前对KRAS与RAF的结构研究主要集中在RAF的两个结构域:富含半胱氨酸结构域CRD和RAS结合结构域RBD。为了更好的了解二者的结合以及RAF的激活,作者分析了在MEK1和14-33二聚体的自抑制状态下,KRAS与完整BRAF结合的冷冻电镜结构,并使用MST技术检测不同状态RAF与KRAS亲和力。综合其他实验发现,KRAS结合不足以激活BRAF,说明了RAS结合和激活RAF是可分离的,并提出小分子抑制剂的新思路。研究结果为了探究RBD对KRAS结合的可及性,作者使用MST技术检测了不同结构域的RAF与KRAS亲和力。单独的RBD结构域的亲和力最强(26nM),表明RBD结构域是RAF和KRAS结合的主要区域。此外,通过MST技术检测了RAS蛋白与自抑制(Autoinhibited)和活性状态(Active dimmer)下全长BRAF的亲和力。结果显明,二者亲和力相似(126nM/108nM),也就是RAF在自抑制状态下,RBD参与结合KRAS没有任何空间障碍。在获得自抑制或活性状态时,需将RAF蛋白与MEK或者14-3-3二聚体形成复合物,再检测与KRAS互作。MST技术无需固定样品,避免固定过程对复合物的影响,并且在溶液条件下检测,保证互作分子达到结合解离平衡状态,从而获得更加准确的Kd值。图:MST检测KRAS和BRAF片段或者复合体的亲和力技术优势MST技术是在溶液中进行的检测,无需固定操作,能够使靶标蛋白或者复合物保持稳定状态,在涉及到复合物或者多元互作时,可获得更加准确的亲和力结果。

应用实例

2024.01.15

我与NanoTemper的故事(1) 北大瞿礼嘉课题组_MST连续3年助力发表CNS

投稿作者:李其昀/兰子君(北大-瞿礼嘉老师课题组)用户的自我介绍:瞿礼嘉课题组一直致力于高等植物雌雄互作的分子机制探究,其中有很大一部分涉及雌雄方受体小肽互作的研究,实验室一直以来和来鲁华教授、王继纵研究员有合作,来老师团队和王老师团队对分子互作方面的应用有相当强的设备和研究基础,他们对我们在这方面的研究提供了非常多的支持和帮助。我们的故事十几年前在MST技术被商用后,植物小肽受体领域就开始大量使用MST技术作为互作实验的研究工具,由于其节约实验材料、简化测试时长,结果的可重复性和量化也比较可靠,因此也被很多同行优先采用。我们组在2017年发表了Science文章后,后续涉及互作部分的实验都开始采用MST作为一项重要的互作证据。受体和小肽蛋白结构大小的不对称以及较强的极性偏好,使得二者的亲和力检测受到一定条件限制,此外还需要考虑生物学活性等问题,综合来看,MST技术其实是更适合受体小肽这一互作模式的。在2022年,我们课题组的一篇Science文章对多种组合的受体与小肽进行了大量的亲和力测定,MST对我们的遗传学实验提供了强有力的化学佐证。在2023年的Cell文章中,我们通过MST对雌方和雄方、雌方和雌方不同小肽受体之间进行亲和力鉴定,直观地量化了我们模型中的分子关系。 通过MST技术的协助,我们的实验效率得到了显著提高,这也帮助了我们能够去发现更多更有意思的故事。NanoTemper感言感谢用户信任与支持!连续3年登榜CNS文献,其背后对科研的钻研和努力一定是一个厚积薄发的过程。在千军万马的科研路上,看到MST技术成功助力我们的用户,提供强有力的互作证据、提高实验效率并实现研究突破,这也是NanoTemper秉承不断创新技术和服务的初衷。为大家推荐北大瞿礼嘉课题组连续3年发表的CNS文献以及讲座回顾。2017年Science重磅!MST技术引领植物有性生殖研究领域的分子互作检测 2022年植物科学小课堂|MST技术在植物有性生殖研究中的应用 2023年北大瞿礼嘉团队又一Cell力作!Monolith再次助力植物有性生殖机制研究获得突破!讲座回顾主题:MST技术助力的核酸、多肽亲和受体发现与改造及在生物传感中的应用研究嘉宾:北京大学 李其昀博士北京大学生命科学学院在读博士生,师从瞿礼嘉教授。致力于高等植物生殖过程雌雄互作的分子机制研究。目前以共同第一作者身份在Science、Molecular Plant杂志发表论文两篇。

企业动态

2024.01.04

NanoTemper邀您盘点2023

新 品 汇 总1.PR Panta+机械臂 (点击查看)*全自动化操作提升运行通量*无需手动完成≥1536个样品检测*可装载多达4个384微孔板*用于检测所有蛋白质候选分子2.生物素化靶点标记试剂盒*专为光谱位移技术研发的试剂盒*仅需15分钟完成标记*无需去除多余染料,提升效率3.人Fc标记试剂盒 (点击查看)*专为使用光谱位移技术进行亲和力检测而优化的荧光染料*仅需30分钟实现高效的抗体标记15周年,砥砺前行,精彩不停!7月,上海办公室乔迁新址8月-11月,成功开启NanoTemper十五周年活动,三重超值福利和惊喜吸引上千粉丝参与。您与NanoTemper的精彩故事还将继续!敬请期待后续报道。官网新模块-支持中心全新的支持中心模块,可协助客户获取更多实用的信息,提供强大的技术支持。点击图片 查看详情丰富的市场活动与专家面对面交流👇 公众号-菜单栏-企业资讯-市场活动实验指南系列电子书-速速收藏【点击图片 下载查看】1.PROTAC电子书2.DLS动态光散射技术指南3.nanoDSF技术应用指南4.一图看懂生物制品的稳定性评估5.抗体药物开发实验指南6.勃林格殷格研发单克隆抗体应用案例精选CNS文献&权威验证(点击对应标题 查看更多)盘点使用PR蛋白稳定性分析仪发布的国内外文献PR系列蛋白稳定性分析仪-文献汇总北大瞿礼嘉团队又一Cell力作!MST再次助力植物有性生殖机制研究获得突破!斯坦福医学院案例分享MST技术检测蛋白的二聚体亲和力Nature案例分享Monolith助力靶向RNA降解剂研究权威验证系列(一) 看nanoDSF技术如何在生物制品热稳定性分析上替代金标准DSC权威验证系列(二) 湖北省药检院使用Panta对人纤维蛋白原质品进行快速质量控制 应用专题汇总PROTAC专题汇总(点击查看)结构生物学应用汇总 (点击查看)2024,NanoTemper已整装待发!迎接新的热爱与新的挑战!

企业动态

2023.12.28

盘点2023下半年使用【PR系列蛋白稳定性分析仪】发表的国内外文献

今年8月,我们盘点了近三年使用PR系列蛋白稳定性分析仪发表在CNS等国内外期刊的高分文献(点击查看往期高分文献)供大家查阅参考。时近年末,让我们再来看看又有哪些国内外研究团队在PR系列蛋白稳定性分析仪的助力下成功发表文献,这些新的文献或许可为您近期或之后的检测提供新的实验思路或技巧哦!应用方向 从应用方向上看,科研及生物医药领域的研究人员更常借助PR系列蛋白稳定性分析仪的多维度组合模块和功能,进行实时同步评估蛋白热稳定性,胶体稳定性,聚集体与粒径等信息。由此可见,PR提供的组合方法及四种技术模块早已成为CNS必备的高分神器,也是您的理想之选。点击图片,查看详细文献列表选择PR获取实验所需的多维度参数信息,您将看到其他技术所不能提供的稳定性数据。 选择PR让您获得更可靠的、高分辨率的蛋白质稳定性数据,检测出不易被发现的稳定性行为,让您对检测结果充满信心!

应用实例

2023.12.28

北大药学院案例分享 | MST技术助力新型RNA编辑系统开发

Part 1研究背景RNA的A-to-I编辑是一种普遍发生于细胞中的转录后修饰。在RNA上,依赖腺苷脱氨酶(ADAR)介导的腺苷脱氨作用可以通过引导RNA和外源性ADAR酶实现对RNA特定位点的A-to-I编辑,从而通过纠正突变的RNA来实现疾病治疗。然而,外源性ADAR融合蛋白的异位表达会增加脱靶编辑的风险,故利用内源性ADAR蛋白的A-to-I的编辑策略更有发展前景。Part 2研究内容2023年北京大学药学院汤新景教授开发出一种新颖且便捷的光触发位点特异性RNA编辑系统,并将研究成果发表在Cell Chemical Biology上。为了开发内源性ADAR蛋白的A-to-I可控的编辑策略,作者设计了一种末端有胆固醇修饰的反义寡核苷酸(3’-笼式arASO):由一段2’-OMe修饰的可编程反义域、用于与靶mRNA杂交的硫代磷酸修饰的3’端和位于5’端的用于招募ADAR蛋白的工程化GluR2 R/G基序组成,这种设计能通过招募内源性的ADAR蛋白来实现位点特异性的RNA A-to-I编辑。并且,作者通过2D细胞和3D肿瘤球的实验验证了3’-笼式arASO在的光触发A-to-I编辑能力。图1:3’-笼式arASO编辑UAG终止密码子,启动EGFP表达Part 3MST技术应用为了研究3’-笼式arASO抑制位点特异性的机制,作者使用MST技术检测了3’-笼式arASO与蛋白和核酸的互作:ADAR1-p150是主要的RNA单碱基编辑器。MST技术确定了3’-笼式arASO与ADAR1-p150的结合亲和力与arASO与ADAR1-p150蛋白的亲和力接近,表明胆固醇修饰并不会对其在5’端的ADAR-招募结构域造成明显影响。图2:MST技术检测ADAR1-p150与3’-笼式arASO/arASO亲和力MST技术检测3’-笼式arASO与不配对的腺苷的单链靶RNA(ssRNA)的结合亲和力检测结果表明,3’-笼式arASO在没有光刺激的情况下与ssRNA(A·C错配)的结合亲和力比其阳性对照的结合亲和力低17.4倍,但在给予光照后,其亲和力恢复到与阳性对照组相当的水平(左图)。这表明,在3’-笼式arASO的反义结合域3’端的胆固醇修饰阻断了其与ssRNA(A·C错配)的结合。而胆固醇修饰对arASO与完全配对的ssRNA的结合亲和力没有影响(右图)。图3:MST技术检测结果说明胆固醇修饰阻断了3’-笼式arASO与靶RNA的结合从而抑制其位点特异性编辑。https://doi.org/10.1016/j.chembiol.2023.05.006IF: 8.6 Q1Part 4技术优势MST技术可应用于不同样品类型的亲和力检测,不论是蛋白和核酸,还是核酸和核酸。此外,亲和力检测时无需固定,即使核酸的极性较强,也不会出现黏附等问题。MST亲和力检测时间短,只需要10min即可完成,无需担心核酸降解。

应用实例

2023.12.21

免纯化亲和力检测 | Monolith 助力膀胱癌发生发展机制研究

研究背景膀胱癌(BLCA)是公认的泌尿系统最常见的恶性肿瘤之一,约占前列腺癌的10%。全世界每年有57万新bing例和21万例死亡。由于其复发倾向和持续监测和随访的必要性,它是经济负担最高的癌症之一。因此,探讨膀胱癌发生发展的机制,寻找诊断和治疗方法是十分必要的。研究内容武汉大学中南医院、武汉大学医学研究院王行环团队此前的研究显示POLD1是膀胱癌恶性转变过程中的一个关键分子。在此基础上,王行环团队证实POLD1在膀胱癌组织中较癌旁组织高表达,在肌层浸润性膀胱癌中较非肌层浸润性膀胱癌高表达,且与预后相关。团队在体内和体外实验中证明了POLD1能够促进膀胱癌的增殖和转移。进一步进行机制研究发现,POLD1通过与FBXW7竞争性结合MYC,从而减弱FBXW7介导的MYC泛素化降解。此外,机制研究还发现POLD1可以与MYC形成复合物参与MYC的转录调控,增强MYC的转录活性;另一方面,MYC能够转录激活POLD1,从而形成了一个POLD1-MYC正反馈回路,增强了对膀胱癌的促癌作用(图1)。这项研究成果于2023年发表在 Nature Communications 杂志。https://doi.org/10.1038/s41467-023-38160-xIF: 16.6 Q1研究人员首先通过CO-IP验证了POLD1与MYC的结合,而当去掉MYC中与FBXW7α结合的区域MB1后,就检测不到结合了。所以研究团队合成了MB1肽段,然后用NanoTemper公司的Monolith分子互作技术检测了POLD1与MB1肽之间的亲和力,并与 FBXW7α作对比,证明POLD1对MB1的亲和力比FBXW7α强,因此它可以与FBXW7α竞争结合MYC(图2)。在这个实验中,POLD1和FBXW7α 也都是与GFP融合表达在293T细胞,直接使用细胞裂解液作为target进行检测,无需纯化蛋白。图1:POLD1通过稳定MYC调节BLCA的增殖和转移,促进膀胱癌发生发展图2:MST技术检测293T细胞中过表达GFP-POLD1的裂解物与MYC-MB1 (WT)肽的结合亲和力技术优势Monolith系列仪器在检测分子间相互作用时,可以直接检测细胞裂解液中的靶标蛋白于配体的亲和力,无需纯化蛋白。这种方法特别适合检测难纯化,或纯化后不稳定的蛋白样品,为科研人员节省蛋白纯化的时间,减少工作量。

应用实例

2023.12.14

应用汇总 | 看NanoTemper如何在结构生物学领域大显身手!

结构生物学是通过X射线晶体学、冷冻电镜以及核磁共振技等技术是帮助人们观测和理解微观生物世界大分子的一门科学。仍记得去年颜宁教授所说过的:结构生物学家必须眼见为实,Seeing is believing。看到的越多,越有价值。那么,我们如何发现更多有价值的信息呢?小编汇总了结构生物学领域的五种方向,精选十篇应用案例,让我们一起看看吧!1抑制剂2结核病药物筛选3酶学4多巴胺受体与配体5突破膜蛋白实验痛点抑制剂 NO.1(点击标题,查看更多)  清华大学颜宁团队 闫创业团队 Jiang Xin团队深入探究人源葡萄糖转运蛋白的外表面抑制剂分子机制作者与清华大学闫创业团队在Nature Communications 共同发表了"Cryo-EM structure of human glucose transporter GLUT4",通过冷冻电镜及晶体结构解析等手段,对GLUT家族蛋白与抑制剂之间的相互作用进行了更深入的探究,从而为发现用于治疗开发的GLUTs抑制剂提供了结构生物学基础。作者使用脂质立方相(LCP)方法获得了SA47与GLUT3复合物的2.3 Å分辨率的晶体结构,并结合Monolith分子互作检测及基于蛋白质脂质体的转运实验,阐明了SA47的作用方式,为发现用于治疗开发的 GLUTs 表面抑制剂提供了分子基础。 NO.2  清华大学Jiang Xin课题组葡萄糖转运蛋白抑制剂清华大学Jiang Xin与颜宁课题组共同通讯在Nature Communications 在线发表了题为"Molecular basis for inhibiting human glucose transporters by exofacial inhibitors" 的研究论文。该研究报告了一种 GLUT3 的变体GLUT3exo,可用于筛选和验证外表面抑制剂。 随后研究团队鉴定了一种外表面 GLUT3 抑制剂 SA47,并通过Monolith分子互作仪检测SA47与GLUT3及其突变体的相互作用,验证了晶体结构中揭示的抑制剂作用位点。该研究为发现用于治疗开发的 GLUTs 表面抑制剂提供了结构生物学基础。Monolith分子互作仪检测不依赖于分子量变化,非常适合于小分子互作的检测。Monolith检测SA47与GLUT3蛋白WT和突变体的亲和力 NO.3(点击标题,查看更多)  美国基因泰克公司PR助力Nav通道研究,收录Science期刊作者在Science杂志上发表了他们关于Nav通道结构的研究成果"Structural basis of α-scorpion toxin action on Nav channels"。为了研究各种小分子抑制剂和通道门控蛋白的作用,他们首先使用基于nanoDSF技术的PR系列仪器精确地监测了嵌合Nav通道的热变性数据。他们使用了一种来自Androctonus australis蝎子中的致命毒素,锁定了其中引发特定位点疼痛反应的蛋白进行验证。随后又进行了冷冻电镜检测,进一步分析了蛋白的结构与功能。结核病药物筛选 NO.4(点击标题,查看更多)  上海科技大学免疫化学研究所饶子和院士杨海涛教授的合作团队MST技术在抗结核病药物筛选中的应用肺结核病目前仍然是全球人类健康的首要威胁之一。多重耐药和完全耐药的结核分枝杆菌的出现,使它成为极其难以治愈的疾病。因此,发现新的肺结核(TB)药物靶点是科学家们梦寐以求的事。作者在Cell期刊发表了题为”Crystal Structures of Membrane Transporter MmpL3, an Anti-TB Drug Target“的研究论文,文中解析了结核分枝杆菌(M . smegmatis)MmpL3完整的晶体结构以及和四个潜在药物形成的复合物的晶体结构。MmpL3结构的解析,对促进MmpL3的抑制剂的筛选以及抗结核病药物的研究具有极其重要的意义。作者通过MST实验验证MmpL3及其突变体对抑制剂的结合强弱。结论是SQ109、AU1235、ICA38及 rimonabant与MmpL3的解离常数分别是是1.65 uM,0.003 uM,0.16 uM和29 uM。这项最新重大研究成果,为抑制剂的筛选以及抗结核病药物的研究开辟了抗生素研发的全新途径。 NO.5(点击标题,查看更多)  复旦大学李继喜课题组中科院植物生理生态研究所赵国屏院士团队延伸因子EF-Tu复合物在结核分枝杆菌蛋白翻译中的结构学研究作者在Communications Biology在线发表研究成果“Structural insights of the elongation factor EF-Tu complexes in protein translation of Mycobacterium tuberculosis”。通过对Ef-Tu不同复合物的晶体学结构研究,发现结核杆菌来源的EF-Tu与EF-Ts之间具有不同的相互作用方式。研究人员通过PR蛋白稳定性分析仪搭载的nanoDSF技术对两千多种小分子进行筛选,得到与EF-Tu特异性结合的抑菌分子Osimertinib,并用MST技术验证了Osimertinib与EF-Tu的直接相互作用。同时,抑菌实验证明Osimertinib具备结核分枝杆菌无毒株H37Ra的菌株抑制能力。这项研究为抗结核药物的筛选提供了新的思路。酶学 NO.6(点击标题,查看更多)  北京大学毛有东课题组蛋白酶体与去泛素化酶动态调控机制课题组在 Nature 在线发表了题为"USP14-regulated allostery of the human proteasome by time-resolved cryo-EM" 的研究论文。研究人员通过时间分辨冷冻电镜技术,揭示了与去泛素化酶动态调控人源蛋白酶体(proteasome)的机制。去泛素化酶USP14通过可逆结合蛋白酶体26S被激活,剪切底物上的泛素链,被认为是一个潜力巨大的癌症和神经退行性疾病的靶标。通过时间分辨冷冻电镜技术,揭示了与去泛素化酶动态调控人源蛋白酶体的机制。 在阐述USP14被蛋白酶体26S激活的机制的过程中,研究团队利用Monolith分子互作仪检测了超大复合物蛋白酶体26S与USP14的相互作用,并在溶液体系中轻松检测三元互作,验证了底物对于USP14-26S亲和力的影响。多巴胺受体与配体 NO.7  北京生命科学研究所郑三多课题组多巴胺受体与配体的识别机制多巴胺受体广泛分布于中枢神经系统,是各种精神神经疾病的重要治疗靶点。课题组在Nature Communications在线发表了题为"Ligand recognition and biased agonism of the D1 dopamine receptor" 的研究论文。本研究通过冷冻电镜技术揭示了D1多巴胺受体(D1R)-Gs复合物的三个结构。文中揭示了D1R有两个单独的结合位点可容纳fenoldopam分子,分别位于正位结合袋(OBP)和扩展结合袋(EBP),并通过Monolith分析得到与结构观察一致的结果。对于亲和力不同的双结合位点的靶标分子与配体相互作用,使用Monolith分析软件可分别拟合计算不同结合位点的亲和力。多巴胺受体D1R具有两个单独的结合位点可容纳fenoldopam分子突破膜蛋白实验痛点 NO.8  欧洲分子生物学实验室膜蛋白的高通量筛选去垢剂的流程在药物开发和结构生物学研究领域中,有许多重要的靶点属于膜蛋白,例如G蛋白偶联受体(GPCRs),离子通道和膜转运蛋白等等,涉及多种生化功能和疾病发生机理,因此一直是研究人员关注的热点。 研究人员使用常用去垢剂DDM把蛋白提取出来,接下来将待筛选的去垢剂预装至96孔板中,把提取出来的蛋白直接进行稀释,孵育一小时后使用PR蛋白稳定性分析仪检测蛋白的Tm与Tagg值。根据检测到的数据,研究人员制作出热图并利用nanoDSF和Backreflection技术开发了一套膜蛋白的高通量筛选去垢剂的流程。 NO.9  爱尔兰科学家使用nanoDSF技术替代传统DSC方法使用脂质立方相(LCP)这一种类膜环境中结晶膜蛋白,由于LCP的粘稠性以及相行为,使用基于染料的传统DSF或DSC的方法来评估蛋白的稳定性基本是不可行的。 使用LCP的结晶方法需要筛选不同的脂质和添加物,把每个LCP组成条件放在许多不同的沉淀剂缓冲液中试验结晶。为了找到良好的LCP条件,最大限度地提高膜蛋白的稳定性,以减少不同结晶试验的次数,爱尔兰科学家使用PR蛋白稳定性分析仪进行了脂立方相中的膜蛋白稳定性检测,并建立了一套方法学,用来快速筛选膜蛋白介观结晶的LCP条件。 以膜蛋白LntEco为例,研究人员首先检测了它在9.9 MAG制备的LCP中的热变性曲线和聚集曲线,然后在脂立方相中进行了与结晶相关的多种处理,包括使用不同的脂质主体、附加脂质体和配体,再用nanoDSF技术检测得到其Tm值的变化,以反映出该种处理方法对LntEco的热稳定性的影响。这一系列的测试也证明了无标记的nanoDSF技术能够在非常粘稠的LCP中测量膜蛋白的稳定性,帮助研究人员在膜蛋白结晶试验之前筛选LCP的条件。 NO.10(点击标题,查看更多)  德国工业大学MST可实现免纯化检测节省实验时间成本在表征膜蛋白功能时,需要在类膜的环境中保持它的天然结构和功能。Nanodiscs可使膜蛋白处于类似磷脂双分子层的环境中,从而模拟膜蛋白在细胞膜中的构象和生物学功能。研究人员就利用了Nanodisc这一工具研究了甘氨酸受体 (GlyR) 在类膜环境中表现出的配体特异性的构象变化,并通过Monolith分子互作仪检测了GlyR与其激动剂的相互作用。研究揭示了GlyR由特定激动剂诱导的构象特征,和在自然环境中配体结合决定受体激活的机制。对于低丰度且难以纯化和固定的膜蛋白,Monolith分子互作检测仪可以实现免纯化检测,直接得到膜蛋白在细胞裂解液中与配体的亲和力,在保证膜蛋白处于天然环境中,最大程度维持其构象和功能的同时节省您制备样品的时间。相关产品在业内,入市8年的PR 系列蛋白稳定性分析仪不断创新的技术并贴合用户需求,凭借无可比拟的4项集成技术,配合超精准的数据检测等多项功能,在晶体学和结构生物学研究中的应用广泛,可在前期蛋白表达、纯化过程中快速而全面地分析影响蛋白稳定性的各种条件,优化纯化流程。用户群每年已超过50%的速度快速增长,早已成为精准表征蛋白稳定性的不二之选!不仅如此,基于MST技术和光谱位移技术的的MO系列分子间相互作用仪也被众多知名药企和科研机构选择,用于分析和验证蛋白的功能完整性。仅在短短几年内,已有数百篇文章被收录在CNS等TOP期刊中,成为助力蛋白表征工具的权威课题组必备产品&高分神器!多功能蛋白稳定性分析仪 PR Panta  ·精准检测,数据质量非常高·无标记检测·检测浓度范围广·低样品消耗量新一代分子互作仪 Monolith X  ·搭载光谱位移技术,检测速度快·无需固定样品,直接在溶液中检测·检测不依赖于分子量咨询电话:010-84462100官网:https://nanotempertech.com

应用实例

2023.11.20

< 1 2 3 ••• 5 > 前往 GO

诺坦普科技(北京)有限公司

查看电话

沟通底价

提交后,商家将派代表为您专人服务

获取验证码

{{maxedution}}s后重新发送

获取多家报价,选型效率提升30%
提交留言
点击提交代表您同意 《用户服务协议》 《隐私政策》 且同意关注厂商展位
联系方式:

公司名称: 诺坦普科技(北京)有限公司

公司地址: 北京市朝阳区东三环北路五号北京发展大厦1609-1611室 联系人: NanoTemper市场部 邮编: 100004 联系电话: 400-860-2855

仪器信息网APP

展位手机站