视频号
视频号
抖音号
抖音号
哔哩哔哩号
哔哩哔哩号
app
前沿资讯手机看

我要投稿

投稿请发送邮件至:weidy@instrument.com.cn

邮件标题请备注:投稿

联系电话:010-51654077-8129

二维码

我要投稿

投稿请发送邮件至:weidy@instrument.com.cn

邮件标题请备注:投稿

联系电话:010-51654077-8129

MEMS质谱技术研究进展

进入
阅读更多内容

分享到微信朋友圈

打开微信,点击底部的“发现”,

使用“扫一扫”即可将网页分享到朋友圈。

分享: 2022/03/10 16:39:04
导读: 正如智能手机没有取代超级计算机一样,MEMS质谱亦不可能取代传统质谱,尤其是高端质谱,也难以企及传统质谱的性能,但毫无疑问其必将会开辟一片更广阔的空间。

前言

让质谱飞入寻常百姓家,相信大多从事质谱研发工作的同事都曾梦想过这样的事情。MEMS(Micro-Electro-Mechanical Systems,微机电系统)质谱是最可能实现这一梦想的革命性技术。

要捋清MEMS质谱技术的发展那就不得不先从质谱的小型化发展开始说起。

自上世纪末开始,质谱仪器的小型化逐渐成为了一个非常热门的研究方向。到现在经过20多年的发展,基本逐个解决了质量分析器、离子源、进样技术及真空系统等在小型化过程中遇到的问题。到目前为止,大部分类型的质谱仪均在不同程度上实现了小型化,而且市场上已经存在大量离子阱、飞行时间、四极杆等较为成熟的小型质谱仪器可供选择。这些小型质谱的基本特点通常是单人可以携带或自由挪动,可依靠电池连续工作若干小时,省去了样品大部分或者所有的前处理工作,基本胜任简单场景的定性和半定量分析,等等。基于这些特点,小型质谱仪器的主要应用是在实验室之外的现场分析,比如人流枢纽的安全筛查、执法取证、环境检测、食品药品监管,甚至是医疗诊断等领域。可以说小型质谱的发展大大伸展了质谱的触角,让质谱走出实验室,走向样品成为了现实。

众多国内外大学、研究机构和商业公司都在持续推动小型质谱技术的进步和商业化,相信未来10年质谱的小型化仍会是最热门的发展方向之一。

但目前看来小型化质谱的进一步发展仍存在一些未解决的问题,这些问题基本可以分成两个方面,一是追求更好的分析性能,二是追求更极致的便携性。前者是为了不断向实验室仪器的性能看齐,尤其是现在的定量和重现性都是需要解决的问题;而后者是持续的小型化。

目前实现质谱小型化主要有三种方式:一是逼近传统机械加工技术的极限,将核心器件按比例缩小;二是3D打印等基于增材制造的快速成型技术;三是基于MEMS微细加工技术。当前大部分小型化质谱采用的是第一种方法,仪器的综合指标与小型化之间可以实现比较好的妥协和平衡。然而此类基于传统机械加工的小型化质谱看上去已经进入了瓶颈期,尤其是受到真空泵的限制,很难再进一步降低质谱的重量、体积、功耗和成本。手持质谱基本是目前基于传统机械加工技术能实现的极限水平。

图片1.png

图为清华大学欧阳证教授在普渡大学工作期间研制的手持式质谱mini 11

图片2.png

图为美国公司908 devices推出的全球首台手持式质谱M908(左)和MX908(中)

快速成型方法在复杂曲面结构的制造方面有很大的优势,但是仍存在很多问题,包括加工精度低、机械性能差以及可选材料受限等。其在某些特殊零件的加工上有一定优势,但是在整机集成制造上的潜力远不如MEMS技术。

研究进展

简单地说,基于MEMS技术进行设计和制造的质谱即为MEMS质谱。尽管其尚未发展成熟,但已经展现出了极大的想象空间。尤其是基于MEMS开发的众多nano-ESI(纳升电喷雾)芯片已经被广泛用于生物医药研发和组学研究等领域,产生了极大的应用价值。Nano-ESI之所以首当其冲,发展迅速,一方面是受到应用端对低样本量消耗、高灵敏度检测等迫切需求的驱动,另一方面则得益于ESI的灵敏度依赖于样品浓度而非样品流量的独特性质。因此,即使nano-ESI的流量下降至纳升水平其灵敏度仍不逊色于常规ESI。而且ESI芯片易于和LC(液相色谱)、CE(毛细管电泳)等各种微流控技术进行单片集成,极大提高了分析性能,简化了工作流程。所以说ESI和MEMS的结合可谓是天作之合。不过由于ESI大多情况是针对液态样品,所以当前几乎都是搭配在常规质谱仪器上使用,尚未用于MEMS质谱。Advion BioSciences公司开发的纳升喷雾芯片技术ESI ChipTM是最具代表性的纳升喷雾产品之一,集成了400个微米尺度的纳升喷雾单元,提高了分析通量和灵敏度。

图片3.png

图为Advion公司开发的纳升喷雾芯片ESI ChipTM

针对气态样品分析,有大量的MEMS离子源吸引了研究者的兴趣,而且取得了非常不错的进展,包括热致发射EI源、场致发射EI源,以及各种微等离子体电离源等。当前对MEMS离子源的研究不仅解决了工艺兼容性、单片集成以及电离效率等问题,还极大降低了功耗,非常有利于推动MEMS质谱的研制。

图片4.png

图为带金刚石涂层的场发射硅针阵列

质量分析器是质谱仪器的核心,不仅直接影响最终分析性能,还是小型化发展的主要推动力。可以说质谱的小型化进程最初就是从质量分析器的小型化开始的。质量分析器进行小型化的同时,又带动了电路和真空等子系统的小型化,因此推动了整机的小型化。尤其是离子阱质量分析器对高气压耐受性比较高,简化模型的结构非常简单,因此一直以来都是小型化研究的热点。美国桑迪亚国家实验室(Sandia National Lab)基于PECVD(等离子增强化学气相沉积)和钨大马士革工艺在25mm2的芯片上制作了一百万个内径1μm的离子阱阵列。十多年前,笔者在中科大读研期间刚开始接触质谱研发工作,研究方向就是MEMS离子阱质量分析器,当时提出了平板线型离子阱结构。据我们所知,这也是国内最早开始的MEMS质谱相关技术的研究。

图片5.png

图为桑迪亚国家实验室开发的MEMS离子阱阵列芯片

到目前为止,除了orbitrap、FTICR等加工困难亦或是工作条件要求苛刻的质量分析器之外,大部分的质量分析器包括四极杆、飞行时间、磁质谱、Wien滤质器等都已经实现了MEMS化。值得一提的是上世纪末提出的一种基于MEMS的四极杆质量分析器,经过10多年的发展和完善,终于在2011年由Microsaic Systems公司商业化,用于其小型化质谱MiD系列产品,实现了和常规质谱接近的性能。然而令人遗憾的是,尽管其离子源、真空接口、质量分析器等都基于MEMS技术开发,但最终整机仍然类似当前小型质谱的形态。

 

图片5--.png

图为Micosaic Systems公司推出的基于MEMS技术的MiD小型质谱

真空泵是阻碍MEMS质谱真正实现最重要的因素之一。正如我们所知,在传统质谱仪器中,在体积、重量、成本、功耗等诸多方面,真空泵都是“主力担当”。而当前可以用于小型质谱的真空泵种类极为有限,在小型质谱市场未产生足够的经济规模之前,真空泵生产商几乎没有动力去推动微型真空泵的开发和推广。正所谓,巧妇难为无米之炊。真空泵已然成为了小型化质谱进一步发展的主要瓶颈。幸运地是,大量基于MEMS技术的微型真空泵取得了令人兴奋的进展。2008年,有现实版神盾局之称的美国国防部高级研究计划局(DARPA)推出了一项名为CSVMP的研发计划旨在推动芯片级微型真空泵技术的发展,该项目要求真空泵的尺寸小于1美分,在1mm3的真空腔体内实现100μP的真空度,功耗小于0.25瓦,还要求集成精确测量气压的真空规。2013年,DARPA宣布来自密歇根大学、麻省理工学院和霍尼韦尔公司的三个研究团队分别完成了三种芯片级微型真空泵的基础研究。

  

图片6----.png

图中从左到右分别为密歇根大学、麻省理工大学和霍尼韦尔公司开发的MEMS真空泵

除此之外,波兰的弗罗茨瓦夫理工大学(Wroclaw University of Technology)开发了一种基于MEMS的辉光放电离子吸附微型真空泵。该泵尺寸只有20mm×12mm×3.4mm,可以将25cm3的真空腔体在数分钟内从0.5Pa抽至5×10-4Pa,且可以维持此真空度几小时。目前,已经有大量基于不同原理的MEMS微泵、微真空规、微阀门、微进样器件等被开发出来,其性能不断提高的同时,多器件的单片集成技术也在持续发展中。相信在未来的MEMS质谱中,真空泵的将不会复现限制微型化发展的瓶颈地位。

MEMS质谱技术不仅进一步缩小了离子光学系统、真空系统等关键部件的尺寸,还使得各部件的直接装配变得更加简单,减少了冗余设计,极大地提高了集成度。目前,离子源、质量分析器、检测器、进样技术、真空规以及真空泵在内的各关键MEMS质谱器件都已经取得了令人振奋的进展,单片集成了几乎所有离子光学器件的MEMS质谱芯片也已经被陆续开发出来。尽管当前的性能由于尺寸缩小造成灵敏度和分辨率等性能的下降,与传统质谱技术相比仍存在一定差距,但是在残余气体分析、过程监控、环境监测、POCT、极端环境原位探测、突发事件应对等领域仍表现出了极大的应用价值。

图片7.png

图为德国汉堡工业大学研究人员开发的PIMMS质谱芯片

图片8.png

图为哥斯达黎加大学研究人员开发的双聚焦磁质谱芯片

尾声

真正意义上的MEMS质谱仪器尚未问世,但各个关键技术已经在不断成熟,一个令人耳目一新的单片集成了大部分甚至所有核心组件的MEMS质谱模块/仪器不久的将来就在眼前,“飞入寻常百姓家”的梦想亦会成为现实。到那时,传统质谱仪器的内核全部都会被封装到类似集成电路芯片的质谱芯片中。和所有电路芯片一样,质谱芯片只是一种特殊的传感芯片,一个PCB基的微型质谱仪器或质谱传感器将成为现实。

正如智能手机没有取代超级计算机一样,MEMS质谱亦不可能取代传统质谱,尤其是高端质谱,也难以企及传统质谱的性能,但毫无疑问其必将会开辟一片更广阔的空间。我们已经看到了智能手机、新能源汽车、数字经济、5G通信等众多产业在技术升级换代过程中产生的翻天覆地的变化。同样,MEMS质谱亦将是革命性的技术,其必将极大改变质谱行业未来的发展格局。当前正值国产质谱仪器快速发展的时机,我们应当未雨绸缪及早布局MEMS质谱技术的基础研究,在下一轮质谱技术迭代来临之前做好储备,这是一次让国产质谱不再受制于人的绝佳机会。


参考资料:

[1]https://www.sciencedirect.com/science/article/pii/S1872204021000748

[2]https://pubs.acs.org/doi/abs/10.1021/ac801275x

[3]https://908devices.com/

[4]https://www.advion.com/

[5]https://www.sandia.gov/

[6]https://www.microsaic.com/

[7]https://newatlas.com/darpa-mems-smallest-vacuum-pumps/27883/


稿件来源:中科院合肥物质科学研究院 程玉鹏

作者公众号:质谱研发那些事儿

微信图片_20220310164715.jpg



[来源:仪器信息网] 未经授权不得转载

标签: MEMS质谱
用户头像

作者:ONE

总阅读量 202w+ 查看ta的文章

网友评论  2
全部评论(2条)
用户头像
1232022-03-13 07:11:23
了解一下啊
0回复
用户头像
泉溪水2022-03-11 16:11:50
让质谱走出实验室,走向样品成为了现实。
0回复
为您推荐 精选资讯 最新资讯 新闻专题 更多推荐

版权与免责声明:

① 凡本网注明"来源:仪器信息网"的所有作品,版权均属于仪器信息网,未经本网授权不得转载、摘编或利用其它方式使用。已获本网授权的作品,应在授权范围内使用,并注明"来源:仪器信息网"。违者本网将追究相关法律责任。

② 本网凡注明"来源:xxx(非本网)"的作品,均转载自其它媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责,且不承担此类作品侵权行为的直接责任及连带责任。如其他媒体、网站或个人从本网下载使用,必须保留本网注明的"稿件来源",并自负版权等法律责任。

③ 如涉及作品内容、版权等问题,请在作品发表之日起两周内与本网联系,否则视为默认仪器信息网有权转载。

使用积分打赏TA的文章

到积分加油站,赚取更多积分

谢谢您的赞赏,您的鼓励是我前进的动力~

打赏失败了~

评论成功+4积分

评论成功,积分获取达到限制

收藏成功
取消收藏成功
点赞成功
取消点赞成功

投票成功~

投票失败了~