视频号
视频号
抖音号
抖音号
哔哩哔哩号
哔哩哔哩号
app
前沿资讯手机看

我要投稿

投稿请发送邮件至:weidy@instrument.com.cn

邮件标题请备注:投稿

联系电话:010-51654077-8129

二维码

我要投稿

投稿请发送邮件至:weidy@instrument.com.cn

邮件标题请备注:投稿

联系电话:010-51654077-8129

一文知晓:纳米孔测序技术

分享到微信朋友圈

打开微信,点击底部的“发现”,

使用“扫一扫”即可将网页分享到朋友圈。

分享: 2014/10/27 10:49:15
导读: 虽然纳米孔测序的优点十分明显,与前几代技术相比在成本、速度方面有着很大优势,但是目前还处在起步阶段,从测序原理到制造工艺都存在有许多问题,许多技术也都只停留在理论阶段。其面临的挑战主要是如下几个部分:

  在基因测序领域,谁控制仪器,谁就会赢得天下,从ABI的3730测序仪到后来的illumina的测序仪,都可以证明这点,这个行业目前是由上游技术驱动的,对技术的依赖度很强。测序公司、诊断公司都加大对测序技术领域的投资,以期能在未来基因测序爆发时期,获得可观的市场份额。根据安永的最近一份报告显示,未来5年内,基因测序的仪器市场规模同基因测序服务基本相当。

  罗氏、illumina公司都加大对新技术的投资。2012年,Roche公司宣布基因测序仪454从测序市场退出时,就加紧在纳米测序技术领域的布局,先后投资了Genia Technologies公司和Stratos Genomics公司。illumina公司也早就盯上了纳米孔测序技术,是牛津Nanopore公司的主要股东之一。然而令illumina公司恼火的是,2013年10月,牛津Nanopore公司回购了illumina公司持有的13.5%股份,从而保持该公司更加独立运营,此次回购价值共超过5640万美元。

  纳米孔测序原理

  在A,T,G,C四种不同的脱氧核苷酸通过纳米孔进入的时候,其所引起的电流变化也是不一样的,随即可通过电流来检测DNA序列。双链DNA直径为2nm,单链DNA直径为1nm,所以采用的纳米孔尺寸有着近乎苛刻的要求。纳米孔:分为生物纳米孔和固体纳米孔,生物纳米孔:a溶血素(一般嵌入在双层脂膜当中),最窄直径尺寸为1.5nm,可允许单链DNA分子通过。但是生物纳米孔对稳定性、电流、噪声等方面有很高的要求。固态纳米孔:由硅及其衍生物制造,通过电子束和离子束在硅或其他材料薄膜上钻出纳米尺度的孔洞。固态纳米孔在稳定性、电流噪声、工艺集成方面有着显著的优势,但是目前有技术瓶颈,以及造价高昂。

  固态纳米孔工艺

  固态纳米孔的制作与半导体工艺的结合使得DNA测序芯片的大规模生产成为可能. 2001年,Li等人使用聚焦离子束在 Si3N4 薄膜上制作出了直径61 nm 的孔,随后又采用 Ar将孔径缩小到了1.8nm。2003年, Storm等人用高能电子束在SiO2薄膜上制作出了直径2 nm的孔. 如今, 人们已经可以在很多材料上制作出亚 10 纳米尺度的固态纳米孔,例如,SiNx,SiO2,SiC,Al2O3等. 此外, 石墨烯因其本身超薄的结构和特殊的电子特性也作为薄膜材料的一种新选择,它的超薄的单原子层结构十分适合隧道电流的测量。

  纳米电极制作

  纳米电极的制作在测序用纳米孔制造工艺中也是一项重要的挑战。前文提到, 纳米电极的形状、与纳米孔重合度的好坏直接影响到电流信号的好坏, 因此要在纳米尺度制作出形状规则、 电学特性良好的电极并不容易。

  目前研究者们所做的工作都是在实验室中对单个纳米孔进行研究, 而无法将其运用到商业中. 到目前为止, 还没有办法能够快速制作出直径大小均一且都在5 nm以下的纳米孔阵列, 在DNA测序芯片向商业化转变的道路上, 这是必须解决的一个问题. 但是, 相信随着半导体制造工艺和纳米电子学的不断发展, 人们一定会制作出高质量的纳米孔芯片。

  产品:Minion

  由英国公司Oxford Nanopore开发设计MinION测序仪则拥有很长的读长,而且只有普通U盘大小,由一个传感器芯片,专用集成电路和一个完整的单分子感应测试所需的流控系统构成,可随身携带,理论上可实现想测就测。日前该测序仪已投入市场使用,或许未来它将基因测序仪变得如同手机一样普通、便捷、廉价。该技术被MIT Technology Review杂志评为“2012年10大年度科技突破之一”。但是其错误率很高,据称有35%的错误率,平均10个碱基,就有3.5个测序错误。这也意味着基因突变检测成为纳米孔测序的禁区,也成为纳米孔测序的致命弱点,并让其长读长的优势黯淡无光。

  面临挑战

  虽然纳米孔测序的优点十分明显,与前几代技术相比在成本、速度方面有着很大优势,但是目前还处在起步阶段,从测序原理到制造工艺都存在有许多问题,许多技术也都只停留在理论阶段。其面临的挑战主要是如下几个部分:

  电流检测系统:电流识别最短距离为3nm,而且目前的材料几乎很难寻找到孔径这么小的材料。

  纳米膜系统:限制目前的纳米孔大小,目前有关纳米孔制作方面仍有很大的阻力

  数据分析系统:即使很多人获取这些数据,但是对于数据的运行和分析仍旧存在很大障碍。

  主要纳米孔技术公司

  Base4, UK

  Fullgen, Argentina

  Genia, USA, California

  INanoBio, USA, Arizona

  Ionera, Germany

  Izon Science, New Zealand

  Nabsys, USA, Providence

  Nanion, Germany

  Nanopore, USA, New Mexico

  Noblegen Biosciences, USA, Massachusetts

  Oxford Nanopore Technologies, UK

  Quantapore, USA, California

  Quantum Biosystems, Japan

  中国从事相关技术研究学者

  龙亿涛

  华东理工大学,上海市曙光学者,“东方学者”特聘教授,研究方向纳米光谱电化学,纳米通道单分子分析,仿生界面等。

  赵清

  北京大学凝聚态所副教授,主要从事ZnO、AlN纳米线的制备、掺杂,表征,电学,光学,场致电子发射性能方面的研究。

  注:部分内容来自生物通和贺建奎博客

[来源:生物探索]

用户头像

作者:刘玉兰

总阅读量 537w+ 查看ta的文章

网友评论  0
为您推荐 精选资讯 最新资讯 新闻专题 更多推荐

版权与免责声明:

① 凡本网注明"来源:仪器信息网"的所有作品,版权均属于仪器信息网,未经本网授权不得转载、摘编或利用其它方式使用。已获本网授权的作品,应在授权范围内使用,并注明"来源:仪器信息网"。违者本网将追究相关法律责任。

② 本网凡注明"来源:xxx(非本网)"的作品,均转载自其它媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责,且不承担此类作品侵权行为的直接责任及连带责任。如其他媒体、网站或个人从本网下载使用,必须保留本网注明的"稿件来源",并自负版权等法律责任。

③ 如涉及作品内容、版权等问题,请在作品发表之日起两周内与本网联系,否则视为默认仪器信息网有权转载。

使用积分打赏TA的文章

到积分加油站,赚取更多积分

谢谢您的赞赏,您的鼓励是我前进的动力~

打赏失败了~

评论成功+4积分

评论成功,积分获取达到限制

收藏成功
取消收藏成功
点赞成功
取消点赞成功

投票成功~

投票失败了~