超薄碳聚合物双层

仪器信息网超薄碳聚合物双层专题为您整合超薄碳聚合物双层相关的最新文章,在超薄碳聚合物双层专题,您不仅可以免费浏览超薄碳聚合物双层的资讯, 同时您还可以浏览超薄碳聚合物双层的相关资料、解决方案,参与社区超薄碳聚合物双层话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

超薄碳聚合物双层相关的耗材

  • 超薄近红外消色差聚合物延迟片
    &bull 用于OEM集成的超薄≤0.55mm基板&bull 600-1100nm和700-1550nm的选项&bull 宽接受角度公差±10°通用规格入射角 (°):+/- 10 基底:Polymer Stack工作温度 (°C):-20 to +40表面质量:60-40注意 :Slow axis marked with blue dot on part and stripeon protective filmDamage Threshold, By Design:500 Watt/cm2 CW, .3 J/cm2 10 nsec pulses @ 532nm, 2 J/cm2 20 nsec pulses @ 1064nm typical产品介绍超薄近红外消色差聚合物延迟片采用光学熔合和无粘合剂结构,具有耐高温、高透射率和超薄格式的特点。这些延迟片采用多层聚合物堆叠设计,其中λ/2延迟片的厚度为0.35mm,λ/4延迟片的厚度为0.55mm。这些延迟片可选择无涂层或带有抗反射涂层(AR涂层),在宽入射角范围内提供近红外范围内的λ/100延迟容差。无涂层的超薄近红外消色差聚合物延迟片提供700-1550nm的扩展延迟范围,而带涂层的选项则在700-1100nm范围内提高了透射率。这些波片非常适合近红外成像和分析仪器,以及原始设备制造商(OEM)集成和其他需要小型化设计的应用。订购信息Dia. (mm)延迟性厚度 (mm)波长范围 (nm)产品编码12.70 +/- 0.15λ/2 ± λ/1000.35 Nominal700 - 110070-57512.70 +/- 0.15λ/4 ± λ/1000.55 Nominal700 - 155070-70812.70 +/- 0.15λ/4 ± λ/1000.55 Nominal700 - 110070-57325.40 +/- 0.15λ/2 ± λ/1000.35 Nominal700 - 110070-57625.40 +/- 0.15λ/4 ± λ/1000.55 Nominal700 - 155070-70925.40 +/- 0.15λ/4 ± λ/1000.55 Nominal700 - 110070-574
  • 聚合物薄膜测厚仪配件
    聚合物薄膜测厚仪配件用于测量聚合物薄膜、有机薄膜、高分子薄膜和 光致抗蚀剂薄膜, 光刻胶膜,光刻薄膜,光阻膜在加热或制冷情况下薄膜厚度和光学常量(n, k)的变化。为了这种特色的测量,孚光精仪公司特意研发了专业的软件和算法,使得该聚合物薄膜测厚仪能够给出薄膜的物理化学指标:例如玻璃化转变温度 glass transition temperature (Tg),热分解温度,薄膜的厚度测量范围也高达10nm--100微米。聚合物薄膜测厚仪配件在传统薄膜测厚仪的基础上添加了加热/制冷的温度控制单元,使用白光反射光谱技术(WLRS),实时测量薄膜厚度和折射率,并通过专业软件记录下这些数据,能够快速实时给出薄膜厚度和薄膜光学常量等物理化学性能数据,并且能够控制薄膜加热和制冷的速度,是聚合物薄膜特性深入研究的理想工具。干膜测厚仪所使用的软件也适合薄膜的其他热性能研究,例如:薄膜的热消融/热剥蚀thermal ablation研究,薄膜光学性质随温度的变化,薄膜预烘烤Post Apply Bake,光刻过程后烘烤 Post Exposure Bake对薄膜厚度的损失等诸多研究。对于薄膜的厚度测量,这款聚合物薄膜测厚仪,薄膜热特性测厚仪要求薄膜衬底是透明的,背面是不反射的。它能够处理最高4层薄膜的膜堆layer stacks,给出两个参数:例如两个薄膜的厚度或一个薄膜的厚度和光学常量。这套聚合物薄膜测厚仪,薄膜热特性测厚仪已经成功应用于测量不同聚合物薄膜的热性能,光刻薄膜的热处理影响分析,Si晶圆wafer上的光致抗蚀剂薄膜分析等。聚合物薄膜测厚仪配件参数 可测膜厚: 5nm-150微米;波长范围:200-1100nm 精度:0.5%分辨率:0.02nm 测量点光斑大小:0.5mm可测样品大小:10-100mm计算机要求:Windows XP, vista, Win7均可,USB接口;尺寸:360x400x180mm重量:13.5kg 电力要求:110/230VAC聚合物薄膜测厚仪配件应用聚合物薄膜测量光致抗蚀剂薄膜测量化学和生物薄膜测量,传感测量光电子薄膜结构测量 半导体薄膜厚度测量在线测量光学镀膜测量聚合物薄膜厚度测量polymer films测量测量有机薄膜厚度测量光致抗蚀剂薄膜测光刻胶膜测厚测量光刻薄膜厚度测量光阻薄膜测厚测量光阻膜厚度
  • 聚合物管路切割器
    产品信息:聚合物管路切割器可得到平整、90° 的切口,无毛刺* 可用于刚性聚合物管路* 切割器的孔洞适用于 1/16in 和 1/8in 管路 订货信息:聚合物管路切割器描述部件号数量聚合物管路切割器A-3271 个/包替换刀片A-3285 个/包

超薄碳聚合物双层相关的仪器

  • 仪器简介:热塑性聚合物在加热时熔融或流动,由无规缠结的(无定形热塑性塑料)或以微晶方式部分有序的(半结晶热塑性塑料)线性大分子组成。它们在农业、汽车工业、航空业、建筑工业、电气工业、纺织等行业广泛运用。本书不仅可作为应用手册查询,也可以作为实验指南,对热分析工作者及热分析学习者有帮助和裨益。目录应用列表1 热分析导论 Introduction to Thermal Analysis1.1 差示扫描量热法 (DSC)Differential Scanning Calorimetrv1.1.1 常规 DSC Conventional DSC1.1.2 温度调制 DSC Temperature&mdash modulated DSC1.1.2.1 ADSC1.1.2.2 IsoStep1.1.2.3 TOPEMTM1.2 热重分析(TGA) Thermogravimetric Anaiysis1.3 热机械分析(TMA) Thermomechanical Analysis1.4 动态热机械分析(DMA) Dynamic Mechanical Analysis1.5 与TGA的同步测量 Simultaneous Measurements with TGA1.5.1 同步DSC和差热分析 (DTA,SDTA) SimuItaneous DSC and Differential Thermal Analysis1.5.2 析出气体分析(EGA) Evolved Gas Analysis1.5.2.1 TGA&mdash MS1.5.2.2 TGAF&mdash TIR2 聚合物的结构和性能 Structure and Behavior of Polymers2.1 聚合物领域的一些定义 Some Definitions in the Field of Polvmers2.2 聚合物的物理结构 Physical Structure of Polymers2.3 热塑性聚合物 Thermoplastic Polymers2.3.1 无定形塑料 Amorphous Plastics2.3.2 半结晶塑料 Semicrystalline Plastics3 热塑性聚合物的重要领域 Important Fields of Thermoplastic Polymers4 热塑性聚合物的应用一览表 Application Overview of Thermoplastic Polymers5 热塑性聚合物的特征温度表 Table of characteristic temperatures of thermoplastic polymers6 重要热塑性聚合物的性能和典型的热分析应用 Properties of Important Thermoplastic Polymers and Typical TA Applications6.1 聚乙烯,PE Polyethylene6.2 乙烯/醋酸乙烯共聚物,E/VAC Ethylene/Vinylacetate Copolymer6.3 聚丙炳,PP Polypropylene6.4 聚苯乙烯,PS Polystyrene6.5 聚氯乙烯,PVC Polyvinyl Chloride6.6 聚醋酸乙烯,PVAC Polyvinyl Acetate6.7 聚酰胺,PA Polyamide6.8 聚对苯二甲酸乙二醇酯,PET Polyethylene Terephthalate6.9 聚碳酸酯,PC Polycarbonate6.10 聚甲醛,POM Polyoxymethylene6.11 聚四氟乙烯,PTFE Polytetrafluoroethylene7 热塑性聚合物的应用 Applications of Thermoplastic Polymers7.1 聚乙烯测试 Measurements on Polyethylene7.2 聚丙烯测试 Measurements on Polypropylene Based Material7.3 聚苯乙烯的玻璃化转变 Glass Transition of Polystyrene7.4 聚氯乙烯的热分析测试TA Measurements on Polyvinyl Chloride7.5 聚酰胺及其共混物 Polyamides and Their Blends7.6 聚对苯二甲酸乙二醇酯的热行为 Thermal Behavior of Polyethylene Terephthalate7.7 其它聚合物测试 Measurements on Other Polymers7.8 热塑性弹体 Thermoplastic Elastomers7.9 聚合物共混物和共聚物 Polymer Blends and Copolymers7.10 热塑性塑料及其产品的进一步测试 Further
    留言咨询
  • 产品特点: 世界上最完整协调的自动聚合物粘度测量系统;针对不同聚合物样品,不同测试要求的灵活组合解决方案;来自UKAS英国皇家认可委员会及ISO组织授权实验室的最专业技术支持和整体解决方案;您的样品粘度测试从此变的轻松简单。 专业 ●聚合物溶液浓度确认基于质量/质量法,采用万分之一或十万分之一天平定量,配置的溶液浓度准确无误 ●聚合物溶解过程中,对同一性质溶液采用固定加温-恒温-降温曲线控制,并采用固定剪切速度和剪切应力进行搅拌,免除了溶解过程中可能带来的误差 ●针对客户的个性测试,由粘度测试应用专家辅助客户建立一套完整的,有溯源性的实验解决方案及数据处理方案 ●全自动,且各功能模块可根据用户需求灵活组合 自动溶液配置 自动样品溶解 自动进样 自动测试 自动清洗 自动结果计算,统计及报表输出 自动保修,自动电话回访,自动上门服务 ●节省 粘度浴槽制冷采用循环冷却器,无需连接实验室冷却水,免除了大量的冷却水的浪费 粘度管清洗系统采用间断冲洗方式,在保证完全清洁的前提下节约了大量的清洗溶剂 ●完善 典型应用:PA,Nylon,PET,PVC,PE,PP,PC,PLA,PBT,纤维素,纤维酯,纸桨,墨水等 可符合的标准:ASTM,D445,D446,D789,D871,D1243,D1601,D2857,D4020,D4603,D1795,ISO307,5351&1628PART16,DIN53726,53727,53728,7744等 可显示的数值:运动粘度、相对粘度、固有粘度、比粘度、比浓粘度、特性粘度、极限粘度值、分子量、K值、聚合度等 ●标准:典型聚合物测量标准偏差 PVC(ASTM D1243)好于0.15% PA (ISO307)好于0.03% PA (ASTM D789)好于0.10% PET(ASTM D4603)好于0.26% 粘度测试温度稳定性:± 0.01℃ 样品下落时间测量分辨率:0.001S 误差小于0.1% 样品质量称量准确性:0.1mg或0.01mg ●高效 开机后快速的温度稳定 测试、清洗、烘干、下一样品测试一气呵成,一个测量位每小时可测量8-10个样品,最多可四个测量位同时运行 由于整体的自动化控制以及完整的安全保护措施,可实现无人守候测试,节约了实验人员大量的宝贵时间 ●安全 使用者在整个测试过程中不接触溶剂 所有与溶剂接触部分均采用高品质PTFE材质制造,100%耐腐蚀 粘度浴槽超温报警及自动关机功能 粘度浴槽防干烧低液位预警,以及预警后无人响应时采取的报警及自动关机功能 溶剂瓶无溶剂提醒功能 废液瓶满瓶提醒功能 自动粘度管清洗时&ldquo SAFE VACCUM&rdquo 真空安全清洗系统1.强大的软件功能:控制操作整个系统,收集整理大批量的测试数据,并根据测试数据计算客户需要的参数,特殊功能可订制,可直接连接到LIMS系统上 2.粘度浴槽制冷单元:该制冷单元通过粘度浴槽内置的冷却环与浴槽联用,可在夏天保证25.00℃的稳定测试环境 3.样品及溶剂进口,全PTFE材质,可连接机器手自动进样,或者直接旋开顶盖,将样品直接倒入;倒入后,样品直接进入到玻璃粘度管的进样管中 4.粘度测量浴槽:给整个粘度测试提供稳定,精准的温度环境,温度稳定性± 0.01℃隔热设计,在最高150℃最低-40℃时运行稳定安全 5. 测试系统主机:该主机负责完成整个系统的协调运行,并与电脑进行通讯控制,完成样品提升,下落时间测量,粘度管清洗步骤 6.X,Y,Z坐标轴自动进样器:该进样器在软件控制下,有选择性的吸取样品并添加到粘度管中,并带有管路自清洁功能,可实现无人测试;在高温粘度样品进样时整个管理采用保温设计,不影响样品性质 7. 样品溶解系统,采用内置有冷却盘管的金属浴加热搅拌器。该溶解系统受软件控制,严格按照设定的温度曲线控温和搅拌,使得样品分批测试的重复性极大的提高,对聚合物生产工艺改良有很大的指导意义 8. 防化学腐蚀真空泵:负责整个粘度测量清洗系统的真空动力提供,真空表显示真空度,完全防化学腐蚀 9. 自动溶液配置系统:该系统采用精密液体分注器与分析天平联用,利用重量/重量法精确配置固定浓度的聚合物样品溶液,整个配置过程软件自动控制,精确安全 如需了解更多物性测试产品请致电:40080921068
    留言咨询
  • 开创聚合物分离的新纪元以更高分离度的体积排阻分离进行聚合物色谱表征通过实现快速的日常校准提升数据一致性和数据质量利用系统先进的技术实现自动化的方法开发以更快的速度获取目标聚合物的更多信息增强对聚合物化学结构的了解,加速创新如今,聚合物科学家所处的市场环境日趋活跃,对高性能材料、生物材料创新的需求不断增长,愈发激烈的竞争导致产生了更强的紧迫感。有了ACQUITY APC系统,聚合物色谱表征脱去极长运行时间的标签。得益于超高效聚合物色谱的优势,分析人员能以快于传统GPC/SEC技术5-20倍的速度,获取准确且可重现的聚合物分子量信息,从而加快创新速度,同时改善实验室运营环境。缩短聚合物样品实验室检测周期:更快地为研发实验室、生产运营团队以及您的客户提供可供决策的结果。推动创新:更快获取结果并掌握更多信息,帮助整个环节更快速地做出响应,从而缩短开发周期并加快上市步伐。简化工艺监测并灵活实现批次一致性控制,可对工艺和合成优化做出灵活的“动态”决策。显著降低每个样品的分析成本:减少溶剂消耗和废液处理量。通过快速溶剂切换和强溶剂兼容性优化方法开发配备聚合物四元溶剂管理器(p-QSM)的APC系统赋予了化学家和聚合物科学家出众的灵活性,让他们能够在同一套系统上使用标准聚合物色谱、梯度聚合物洗脱色谱(GPEC)和反相LC分析非常复杂的共聚混合物和聚合物添加剂。附加的系统功能支持自动化选择多达六种不同的溶剂。自动化色谱柱切换功能结合ACQUITY APC色谱柱的刚性和可灵活溶剂切换的颗粒配合使用,为体积排阻色谱法分离聚合物的方法开发,率先提供了全世界真正意义上的自动化解决方案。这套解决方案支持在数小时内完成聚合物的方法开发到检测,而无需数天时间。全方位多维色谱细节决定一切 — 更优的细节是我们不懈努力的目标当与PSS Polymer Standards Service GmbH的WinGPC UniChrom&trade 软件结合使用时,沃特世APC系统有助于研究人员使用多维分离方法深入了解复杂的聚合物材料,从而增加单次色谱分析的峰容量。应用多维色谱方法能够通过两种不同的连续保留机制分离分析物。该方法可以使分析物与单维色谱分离中通常发生共洗脱的其它化合物实现分离。这有助于大幅提升多维分离度,并提供有关复杂聚合物样品化学结构和组成的详细信息。始终能满足您研究需求的色谱柱技术BEH色谱柱技术采用亚乙基桥杂化(BEH)技术的颗粒可确保色谱柱在恶劣的运行条件下仍具有高柱效和长使用寿命。先进的反相和HILIC HPLC色谱柱BEH色谱柱适用于常见的反相色谱分析,此外,这款色谱柱在极端pH条件下可保持稳定,并且广泛适用于多种化合物,因此也是方法开发的理想选择。使用先进的检测解决方案获取有关聚合物样品的更多信息ACQUITY APC系统配备先进的检测器,可通过单次分析为聚合物研究人员提供有价值的决策支持信息。将沃特世APC系统与先进的检测解决方案相结合,可通过引入示差折光(RI)检测器、紫外(UV) PDA、光散射(LS)和粘度检测器(IV)显著提升SEC分析的信息获取能力。借助第三方先进检测功能集成,科学家还能对样品进行更全面的表征,从而更好地掌握新型复杂聚合物的结构-性能关系。利用业内率先推出专用校准套件提升数据质量和一致性由于运行时间小于10 min,使用ACQUITY APC校准标准品在30 min内即可校准一套串联ACQUITY APC色谱柱。这些标准品套件与ACQUITY APC色谱柱的分子量范围相匹配,可通过简单的稀释后进样为任何串联色谱柱生成10点校准图。这是一款有助于为特定应用选择理想色谱柱和校准标准品的便捷工具。得益于可对串联色谱柱进行日常校准的优势,数据一致性得到了极大改善,提供批次间测量结果始终如一的可靠性。功能和优势加速创新:亚3 μm刚性大孔径ACQUITY APC色谱柱与ACQUITY APC系统的超低系统扩散优势相结合,实现高分离度的聚合物分离。优化方法开发:快速溶剂切换和强溶剂兼容性,有助于应对聚合物分析中的严苛分离条件。提高分析范围和实验室效率:一套系统支持多种应用,包括基础LC、梯度、等度、反相和GPC分析。更深入地了解您的聚合物样品:可兼容多种检测器技术包括第三方先进的检测器,例如示差折光、紫外/可见光、光电二极管阵列或蒸发光散射检测器,还可兼容多角度光散射和粘度检测器等。缩短聚合物样品实验室检测周期:以快于传统SEC/GPC技术5-20倍的速度为您的研发实验室、生产运营团队和客户提供可供决策的结果。简化并优化串联色谱柱的校准:提供与串联色谱柱分子量范围匹配的标准品。多样化的色谱柱管理功能:可自动从多达两套串联ACQUITY APC色谱柱和多达两套串联传统GPC色谱柱中进行选择 - 所有色谱柱都安装在稳定的恒温环境中。溶剂管理器提供的精确流量:可确保分子量数据的准确性始终如一。
    留言咨询

超薄碳聚合物双层相关的试剂

超薄碳聚合物双层相关的方案

超薄碳聚合物双层相关的论坛

  • 【讨论】聚合物超薄膜 红外光谱

    本人的课题是聚合物超薄膜的构筑,在基底上基于层层组装技术在基片上沉积聚电解质,一层聚电解质膜的厚度只有几个纳米,我想用氟化钙做基底,然后再去做红外,我想问的是,由于量比较少,吸收的肯定也比较少,这样的超薄膜能做红外吗,样品的量是不是太少了,峰会不会被噪声干扰而无法识别?谢谢(由于仪器比较老,做不了衰减全发射,只能做最普通的红外测试,哎,真杯具啊)

  • 【求助】聚合物薄膜 截面样品 制备方法求教!!!

    小弟初来乍到,有一个问题想求教各位:我的样品是聚合物薄片上的有机薄膜,总厚度可能有毫米级了,上面的薄膜样品约有几十个微米,想观察基地上薄膜的断面形貌。所以整个样品就是很韧的聚合物膜(包括基底),不像成在硅片上这个好制备。用液氮脆断似乎也很困难,而使用超薄切片似乎也不合适。如果想做出一个不破坏基材结构的断面的话,大家有什么建议呢???十分感谢回复及关注的XDJM~

超薄碳聚合物双层相关的资料

超薄碳聚合物双层相关的资讯

  • 仪器新应用,科学家利用多种表征揭示新型纯有机二维编织聚合物材料!
    【科学背景】二维材料自2004年通过机械剥离法从石墨中剥离出石墨烯以来,因其独特的超薄片状形态和极高的比表面积,引起了广泛关注,并在凝聚态物理学、材料科学和化学领域展示了优异的性能和应用前景。然而,构建纯有机分子纤维的无瑕二维编织图案仍然是一个重大挑战,尽管这种可能性已经被多次提出。主要问题在于如何精准地将纯有机分子纤维编织成无瑕的二维双轴编织图案,并获取精确的结构信息,如键长、键角和聚合物网络中原子的空间位置。有鉴于此,浙江大学黄飞鹤团队、李光锋研究员、美国德州大学奥斯汀分校Jonathan L. Sessler教授和浙江工业大学化工学院朱艺涵教授合作提出了通过配位B&minus N键驱动的编织聚合方法,来构建纯有机二维编织聚合物网络(2DWPNs)。研究中,科学家们通过定义基于1,4-二(苯并二噁硼)苯(BDBB)和1,2-二(4-吡啶基)乙烯(BPE)编织聚合的两上两下编织图案,成功获得了2DWPN单晶,并通过单晶X射线分析揭示了其明确定义的编织拓扑结构。此外,使用Scotch Magic Tape从分层晶体中成功剥离出了自由悬挂的二维单层纳米片。相关成果在Nature Chemistry发题为“Single crystals of purely organic free-standing two-dimensional woven polymer networks”研究论文。这些研究成果展示了纯有机编织聚合物网络的精确构建,并突显了在二维有机材料中应用编织拓扑结构的独特机会,开创了纯有机自由悬挂二维编织聚合物网络(2DWPNs)作为功能材料的新方向。这些发现不仅推动了纯有机二维材料的发展,还为理解其形成机制和结构-性能关系提供了新的视角。【科学亮点】1. 纯有机二维编织聚合物网络的合成:本文成功合成了纯有机自由悬挂的二维编织聚合物网络(2DWPN),这是通过配位B&minus N键驱动的编织聚合反应实现的。该网络具有无瑕的二维双轴编织结构,为纯有机材料领域带来了新的突破。2. 精确的编织拓扑结构:通过X射线衍射分析,揭示了该编织聚合物网络的精确拓扑结构。单晶的获得和结构的明确定义展示了编织拓扑在分子层面上的精确构建。3. 自由悬挂二维单层的制备:利用Scotch Magic Tape从块状晶体中成功剥离出自由悬挂的二维单层纳米片,这在二维编织材料中较为少见。此方法为进一步探索二维编织聚合物的表面和结构特征提供了便利。4. 高分辨率电子显微镜成像:通过低剂量和低温电子显微镜技术,研究了二维编织聚合物的表面特征,揭示了其分子层面的细节。这些成像技术帮助确认了2DWPN的表面结构和特性。5. B&minus N键驱动的编织机制:本研究展示了利用B&minus N配位键的内在构象柔性来调节聚合物网络的拓扑结构。该机制利用了配位B&minus N键在溶液中的动态性和固态中的稳定性,为编织结构的形成提供了有效的控制方法。6. 新型二维材料的潜力:通过本研究,展示了二维编织聚合物网络在材料科学中的潜在应用前景。编织拓扑结构为二维有机材料提供了独特的应力分散路径和改善刚性晶体的柔韧性,开辟了功能性材料的新方向。【科学图文】图1:标记为2DWPN-1的二维瓦普材料(2DWPN)的示意图。图2:NWPN-1和2DWPN-1拓扑形成机制。图3:原子级薄2DWPN-1薄片的制造和表征。图4:二维瓦普材料(2DWPN-1)晶体的低温低剂量高分辨透射电子显微镜(HRTEM)图像。图5:2DWPN-1和NWPN-1的机械性能研究。【科学结论】本文的研究展示了利用配位B&minus N键驱动的二维编织聚合物网络(2DWPN)的创新设计和合成方法。这一方法不仅突破了传统材料设计的局限,还提供了一种新颖的合成策略,通过调节配位B&minus N键的角度,精确控制了聚合物网络的拓扑结构。这种从分子层面调控材料结构的能力,为未来在合成新型功能性材料时提供了宝贵的经验。其次,成功制备和表征自由悬挂的二维单层纳米片展示了编织聚合物网络在实际应用中的潜力。通过使用Scotch Magic Tape剥离技术和低温电子显微镜,研究团队揭示了纳米片的表面特征和结构细节。这一成果不仅证明了二维编织材料的制备可行性,还为二维材料的性能优化和应用拓展提供了新的实验手段。此外,编织拓扑结构在应力分散和提升材料柔韧性方面的优势也为材料科学领域带来了新的视角。研究表明,编织结构能够有效缓解应力集中,提升刚性材料的柔韧性,这一发现开辟了材料设计的新方向,尤其是在高性能和耐用材料的开发中具有重要意义。文献详情:Xiao, D., Jin, Z., Sheng, G. et al. Single crystals of purely organic free-standing two-dimensional woven polymer networks. Nat. Chem. (2024). https://doi.org/10.1038/s41557-024-01580-3
  • 这个电镜太酷了!5 kV低电压设计,聚合物/高分子材料无需染色,可快速完成筛样,换样仅3分钟!
    5 kV低电压设计,聚合物/高分子材料无需染色操作简单换样快捷,换样仅需3 min成本低廉 无需冷却水无需专业实验室维护成本低新一代超小型台式透射电子显微镜LVEM 5 聚合物/高分子是一类重要的材料,且随着应用领域越来越广泛,全也在投入更多的精力对其进行研究。透射电子显微镜集形貌观察以及电子衍射技术于一体,能直观展示样品的细微结构与形态,并准确关联晶态结构和晶体取向,是聚合物/高分子材料微观结构表征不可或缺的仪器设备。但是,由于聚合物/高分子材料因高压电子束轰击下不稳定和非常低的结构反差给电镜研究带来很大困难。为此,美国Delong Instrument公司推出新一代LVEM5超小型多功能低电压台式透射电镜,以实现这一功能。LVEM5采用5 kV低电压设计,能有效降低聚合物/高分子材料样品因高能电子束辐射产生的损伤,防止高压电子束轰击造成的样品抖动及破碎、晶体结构破坏等。 同时,由于聚合物/高分子材料大多由C、H、O等轻元素组成,传统的制样过程一般会采用类似于生物样品的重金属染色方法。利用电子散射能力较强的金属制剂对样品进行染色来提高的图像的衬度。然而,使用这种方法需要人为的加入样品以外的成分,这样做往往会破坏样品原始的特性。现在,使用LVEM5台式透射电镜,即使在不使用染色剂的情况下,利用低电压新型成像技术,也可以有效地提升图像衬度,展现样品的本征形貌。 除此之外,LVEM5超小型多功能台式透射电镜还能满足科研工作者繁重的样品筛选工作,其更多的优点如下:操作简单,换样快捷,成本低廉 LVEM5直观的用户界面、简便的控制台设计,用户仅需少的培训,即可轻松操作,让用户在使用时感觉更加舒适。不同于传统透射电镜每次更换样品后需要长时间抽真空,LVEM5更换样品仅需3分钟,可节省大量时间。LVEM5次购置费用远低于传统透射电镜。LVEM5特的设计优势,在使用中无需冷却水等外设,无需安装在特殊实验室,维持成本低。台式设计:体积小巧,灵活性高 传统透射电子显微镜体积庞大,对放置环境有严格的要求,并且需要水冷机等外置设备。通常会占据整间实验室。LVEM5从根本上区别于传统电镜,尺寸较传统电镜缩小了90%,对放置环境无严格要求,无需任何外置冷却设备,可以安装在用户所需的任意实验室或办公室桌面。TEM-ED-SEM-STEM四种成像模式 LVEM5是新一代电子显微镜,不仅具有传统透射电镜功能,同时集成了扫描电镜功能,在一台电镜上即可实现TEM-ED-SEM-STEM四种成像模式。通过控制软件,LVEM5可以在四种模式间快速切换。研究人员可以获取同一样品、同一区域的不同模式图像,更加方便多方位深入的研究样品。电子光学-光学两图像放大 LVEM5电子光学系统采用倒置设计,场发射电子枪位于显微镜底端。电子枪发射出的高亮度电子束,经过加速、聚焦以及样品作用后,照射在高分辨率 YAG荧光屏上。荧光屏上的图像,包含了纳米的样品信息。YAG荧光屏将电子光学信号,转化成光学信号。采用光学显微镜对图像进一步进行放大。TEM模式下,放大倍数~20万倍(TEM Boost升版 ~50万倍)。而整个电镜体积,仅与光学显微镜相仿。5 kV低加速电压,有效提高轻元素样品成像质量,样品无需染色 LVEM5采用5 kV低电压设计。相比高电压,低压电子束同样品的作用更强,对密度和原子序数有很高的灵敏度,对于0.005 g/cm3的密度差别仍能得到很好的图像对比度。例如,对20 nm碳膜样品,5 kV电压下比100 kV电压下对比度提高10倍以上。而LVEM5的空间分辨率在低电压下仍能达到2 nm。 聚合物/高分子及生物样品的主要元素为C、H、O等轻元素,使用传统透射电镜观测时,需要使用重金属元素对样品进行染色,以增强对比度。 LVEM5观测样品时无需染色,避免了染色造成的样品污染和扭曲,展现样品的本征形貌。超小型多功能台式透射电镜LVEM5与传统透射电镜的对比:传统透射电镜LVEM放大倍数高,分辨率0.2 nm左右分辨率:1.5nm(LVEM5)1nm (LVEM25)进样速度慢,约15-30分钟进样速度快,约3分钟操作复杂:操作人员需经过长期的严格培训为保证设备正常运行,好是专门做电镜的研究生操作,人工成本高操作简单:半天培训即可立操作无需专人操作放置于一层或地下室,需要特殊处理的实验室,需防震处理,环境要求高可放置于任何位置,厂房、办公室、实验室需要动力电(不能断电)、需要水冷机、液氮等维护成本高无需特殊电源,无需水冷、液氮维护成本低超小型多功能台式透射电镜LVEM5新应用案例聚合物/高分子材料TEM模式SEM模式和STEM模式其他材料TEM模式SEM模式STEM模式和ED模式 用户评价LVEM5 User Profile: Dr. Betty Galarreta “While we were looking for an electron microscope, we knew we wanted to get one that did not require complicated and expensive maintenance. We also wanted equipment that was able to resolve details within the 1-2 nm range and that we could use to analyze not only metallic nanoparticles but also some biopolymers. The LVEM5 not only met our requirements but also made it possible to have sort of a 3 in 1 electron microscope, being able to characterize the same area in TEM, SEM and STEM mode.” "当我们在调研射电子显微镜时,我们想要一台不需要复杂和昂贵维护的设备。同时,我们还希望这台透射电子显微镜能够观察到1-2纳米尺度内的细节,而且这台电镜不仅可以用来分析金属纳米颗粒,还可以分析一些生物聚合物材料。LVEM5不仅满足了我们的要求,而且这台透射电子显微镜同时拥有三种功能,能够在TEM、SEM和STEM模式下对同一区域进行表征。" LVEM5 User Profile: Dr. Francesca Baldelli Bombelli “We are very satisfied with the instrument as it allows us to screen a high number of samples in a short time with a limited cost. It’s easy to use, without the need of a specific technician to run it, and with a low cost of maintenance. It allows the screening of a high number of samples in a quite short time. It is also quite good in the imaging of organic nanomaterials thanks to its low voltage which does not degrade them.” "我们非常满意这台透射电子显微镜,因为它允许我们在短时间内以有限的成本筛选大量的样品。这台设备很容易使用,不需要专门的技术人员来运行它,而且维护成本低。它可以在相当短的时间内筛选大量的样品。同时,归功于低电压操作模式,LVEM5非常擅长于有机纳米材料的成像,不会使它们发生降解。" LVEM5 User Profile: Dr. Fabrice Piazza “The most exciting moment was to find diffraction patterns of single bilayer graphene domain with AB stacking with LVEM5. The single bilayer graphene domain with AB stacking discriminates from AA counterpart by the three-fold symmetry of the spot intensity distribution on the inner ring of the diffraction patterns. This cannot be observed at 60–100 keV. Those observations confirmed the calculations of one of our collaborator at CEMES, Dr. Pascal Puech. Definitively, one of the greatest moments in my 22-year-long career. We have found that the advantages of using a LVEM go beyond cost issues. Indeed, by using LVEM to analyze 2D materials, in many cases, one can quickly obtain the number of layers and stacking sequence. Also, as we demonstrated the methodology is useful for materials other than graphene, such as transition metal dichalcogenides (TMD) which are nowadays very popular worldwide. Analyzing these materials in these ways is not possible using a conventional TEM operating at 60–100 keV.” "激动人心的时刻是用LVEM5衍射模式证明了单双层石墨烯域是以AB方式堆积的。具有AB堆积的单双层石墨烯域在衍射图像上与AA堆积的单双层石墨烯域的区别为,内环上的光斑强度分布的三倍对称性不同。这在60-100 KeV电压下是无法观察到的。这些观察结果证实了我们一位合作者的计算结果,来自CEMES的Pascal Puech博士。这肯定是我22年职业生涯中伟大的时刻之一。 我们已经发现,使用LVEM5已经远超出了其成本优势。事实上,通过使用LVEM5来分析二维材料,在许多情况下,人们可以快速获得层数和堆叠顺序。另外,正如我们所展示的,该方法对石墨烯以外的材料也是有用的,例如当今非常流行的过渡金属二氯化物(TMD)材料。对于使用60-100 keV电压操作的传统透射电子显微镜,这些材料是不能用这种方法分析的。"用户单位
  • 高分子表征技术专题——透射电子显微镜在聚合物不同层次结构研究中的应用
    2021年,《高分子学报》邀请了国内擅长各种现代表征方法的一流高分子学者领衔撰写从基本原理出发的高分子现代表征方法综述并上线了虚拟专辑。仪器信息网在获《高分子学报》副主编胡文兵老师授权后,也将上线同名专题并转载专题文章,帮助广大研究生和年轻学者了解、学习并提升高分子表征技术。在此,向胡文兵老师和组织及参与撰写的各位专家学者表示感谢。更多专题内容详见:高分子表征技术专题 高分子表征技术专题前言孔子曰:“工欲善其事,必先利其器”。 我们要做好高分子的科学研究工作,掌握基本的表征方法必不可少。每一位学者在自己的学术成长历程中,都或多或少地有幸获得过学术界前辈在实验表征方法方面的宝贵指导!随着科学技术的高速发展,传统的高分子实验表征方法及其应用也取得了长足的进步。目前,中国的高分子学术论文数已经位居世界领先地位,但国内关于高分子现代表征方法方面的系统知识介绍较为缺乏。为此,《高分子学报》主编张希教授委托副主编王笃金研究员和胡文兵教授,组织系列从基本原理出发的高分子现代表征方法综述,邀请国内擅长各种现代表征方法的一流高分子学者领衔撰写。每篇综述涵盖基本原理、实验技巧和典型应用三个方面,旨在给广大研究生和年轻学者提供做好高分子表征工作所必须掌握的基础知识训练。我们的邀请获得了本领域专家学者的热情反馈和大力支持,借此机会特表感谢!从2021年第3期开始,以上文章将陆续在《高分子学报》发表,并在网站上发布虚拟专辑,以方便大家浏览阅读. 期待这一系列的现代表征方法综述能成为高分子科学知识大厦的奠基石,支撑年轻高分子学者的茁壮成长!也期待未来有更多的学术界同行一起加入到这一工作中来.高分子表征技术的发展推动了我国高分子学科的持续进步,为提升我国高分子研究的国际地位作出了贡献. 借此虚拟专辑出版之际,让我们表达对高分子物理和表征学界的老一辈科学家的崇高敬意!透射电子显微镜在聚合物不同层次结构研究中的应用Applications of Transmission Electron Microscopy in Study of Multiscale Structures of Polymers作者:王绍娟,辛瑞,扈健,张昊,闫寿科 作者机构:青岛科技大学 橡塑材料与工程省部共建教育部重点实验室,青岛,266042 北京化工大学材料科学与工程学院 化工资源有效利用国家重点实验室,北京,100029作者简介:辛瑞,女,1990年生. 青岛科技大学高分子科学与工程学院副教授,2018年在北京化工大学获得博士学位,2014~2018年在中国科学院化学研究所进行联合培养,2018~2020年在青岛科技大学从事博士后研究并留校任教. 获“国家青年科学基金”资助. 主要研究方向是多晶型聚合物的晶型调控与相转变研究.摘要聚合物材料的性能与功能取决于各级结构,其中化学结构决定材料的基本功能与性能,而不同层次聚集态结构能够改变材料的性能和赋予材料特殊功能,如高取向超高分子量聚乙烯的模量比相应非取向样品提高3个数量级,聚偏氟乙烯的β和γ结晶结构则能赋予其压电、铁电等特殊功能. 因此,明确聚合物不同层次聚集态结构的形成机制、实现各层次结构的精准调控和建立结构-性能关联具有非常重要的意义,致使对聚合物各级结构及其构效关系的研究成为高分子物理学的一个重要领域. 本文将着重介绍透射电子显微镜在聚合物不同层次结构研究中的应用,内容包括仪器的工作原理、样品的制备方法、获得高质量实验数据的仪器操作技巧、实验结果的正确分析以及能够提供的相应结构信息.AbstractThe performance and functionality of polymeric materials depend strongly on the multiscale structures. While the chemical structure of a polymer determines its basic property and functionality, the structures at different scales in solid state can change the performance and even enable the polymer special functions. For example, the modulus of highly oriented ultrahigh molecular weight polyethylene is three orders of magnitude higher than that of its non-oriented counterpart. For the polymorphic poly(vinylidene fluoride), special piezoelectric and ferroelectric functions can be endowed by crystallizing it in the β and γ crystal modifications. Therefore, it is of great significance to disclose the structure formation mechanism of polymers at all levels, to realize the precise regulation of them and to correlate them with their performance. This leads to the study of polymer structure at varied scales and the related structure-property relationship a very important research field of polymer physics. Here in this paper, we will focus on the application of transmission electron microscopy in the study of different hierarch structures of polymers, including a brief introduction of the working principle of transmission electron microscopy, special techniques used for sample preparation and for instrument operation to get high-quality experimental data, analysis of the results and correlation of them to different structures.关键词聚合物   透射电子显微镜   样品制备   仪器操作   结构解释 KeywordsPolymer   Transmission electron microscopy   Sample preparation   Instrument operation   Structure explanation  聚合物是一类重要的材料,其市场需求日益增长,说明聚合物材料能够满足使用要求的领域越来越广,这应归因于聚合物材料性能和功能的各级结构依赖性. 首先,包括组成成分、链结构及构型、分子量及分布等的化学结构决定材料的基本性能和功能. 例如:高密度聚乙烯(即直链型聚乙烯)的热稳定和机械性能明显优于低密度聚乙烯(支化型聚乙烯),而分子链的共轭双键结构则能赋予聚合物导电能力[1~5]. 对化学结构固定的同一聚合物材料而言,不同形态结构可以展示出完全不同的物理、机械性能. 以超高分子量聚乙烯为例,其非取向样品的模量与强度分别为90 MPa和10 MPa,分子链高度取向后,模量增加到90 GPa,增幅为3个数量级,强度(3 GPa)也增加了近300% [6]. 另外,有机光电材料的性能也与分子链排列方式密切相关[7~12]. 对结晶性聚合物材料而言,聚集态结构调控不仅影响性能,而且可以实现特殊功能,如常规加工获得的α相聚偏氟乙烯属于普通塑料,特殊控制形成的β或γ相聚偏氟乙烯则具有压电、铁电等功能[13~20]. 由此可见,揭示聚合物不同层次聚集态结构的形成机制,明确各级结构的影响因素,发展聚合物多层次聚集态结构的可控方法,对发掘聚合物材料的特殊功能和提高性能进而拓展其应用领域具有十分重要意义,致使对聚合物各级结构及其构效关系的研究一直是高分子物理学的一个重要领域.高分子不同层次结构既与高分子的链结构有关,又与加工过程有关. 因此,高分子形态结构的研究内容十分丰富,且对形态结构的研究不仅是深入理解聚合物结构-性能的基础,而且能为聚合物加工过程结构控制提供依据. 经过长期研究积累,目前已经发展了针对聚合物不同层次聚集态结构表征的多种成熟技术手段,如光谱技术[21~28]、散射与衍射技术[29~37]、显微技术[38~50]以及理论计算模拟[51]等,这些方法在聚合物聚集态结构表征中各有优势. 如光谱技术的长处在于表征高分子链结构、晶区与非晶区的链取向和晶态中分子链相互作用等.散射和衍射可用于表征聚合物的结晶态结构、结晶程度与取向和微区结构尺寸等. 相对于光谱、散射和衍射技术,显微术的优势在于能够直观地展示微观尺度结构,如光学显微镜用来展示聚合物的微米尺度结构、跟踪球晶的原位生长过程等[38,39],而原子力显微镜能显示纳米尺度结构及片晶的生长行为,甚至给出聚合物的单链结构信息[42]. 当然,大多数情况下,需不同技术相结合来准确揭示一些聚合物的不同层次结构[52~59]. 例如:聚(3-己基噻吩)(P3HT)因其b-轴(0.775 nm)和c-轴(0.777 nm)的晶面间距基本相同,无法用衍射技术精准确定其分子链取向,而衍射与偏振红外光谱结合可以明确其晶体取向[54]. 透射电子显微镜(本文中简称为电镜)是集明场(BF)和暗场(DF)显微术以及电子衍射(ED)技术于一体的设备,能够直接关联各类晶体的不同形态结构[60]. 例如:对聚乙烯单晶的电镜研究[61~63],证明了片晶仅有十几个纳米厚,但分子链沿厚度方向排列,根据这一电镜结果提出了高分子结晶的链折叠模型,对推动结晶理论的迅速发展做出了巨大贡献. 然而,电镜对观察样品要求苛刻,且样品在高压电子束轰击下不稳定,导致电镜研究高分子形态结构具有很大挑战性.针对电镜研究高分子形态结构面临的挑战,本文将着重介绍电镜在聚合物不同层次结构研究应用中的一些技巧,主要内容包括电镜的工作原理、不同类型样品的制备方法以及稳定手段、获得高质量实验数据的仪器操作技术、实验结果的正确分析,并结合具体示例解释相关数据对应的聚合物结构信息.1电镜工作原理显微术是将微小物体放大实现肉眼观察的技术. 实际上,人们常用放大镜对细小物体的直接观察就是一种最原始的显微手段,只是受限于放大能力仅能实现对几百微米以上物体的观察. 为观察更细小物体,人们通过透镜组合来提高放大能力,从而诞生了光学显微镜. 如图1所示,光学显微镜是通过对中间像的投影放大提升了放大本领,其两块透镜组合的放大能力是两块透镜的放大率之积. 基于这一原理,增加透镜数目可进一步提高光学显微镜的放大能力,而透镜本身缺陷造成的求差、色差、象散、彗差、畸变等象差会使图像随透镜数目增加变得不清晰. 另外,考虑到人眼的分辨本领大概为0.1 mm,而光学显微镜的极限分辨率为0.2 μm,500倍是光学显微镜有效放大倍率,即500倍就能使一个尺寸为0.2 μm放大到人眼能分辨的 0.1 mm. 由此可见,要观察更细微结构需要提高显微镜的分辨率. 根据瑞利准则,光学显微镜的分辨本领可表示为:Fig. 1Sketch illustrating the working principle of optical microscope.其中,λ为光源的波长,NA为数值孔径,其值是透镜与样品间的介质折射率(n)与入射孔径角(α)正弦的乘积,即NA = nsinα. 可见,减少波长能有效提高光学显微镜的分辨能力,例如以紫外光为光源的显微镜分辨率可提高到0.1 μm,欲进一步提高显微镜分辨能力须选择波长更短的光源.电子波的波长与加速电压(V)相关,可用λ=12.26 × V−−√式表示,根据该公式,100 kV和200 kV电压加速电子束的波长分别为0.00387 nm和0.00274 nm,经相对论修正后变为0.0037 nm和0.00251 nm,如以高压加速电子束为光源,能使显微镜的分辨率得到埃的量级,这就促使了电子显微镜的开发. 如图2所示,电子显微镜工作原理与光学显微镜相似,只是使用高压技术的电子束为光源,而相应的玻璃聚光镜(condenser)、物镜(objective lens)以及投影镜(projection lens)均由磁透镜替代了光学显微镜的玻璃透镜. 另外,电子束能与样品中原子发生多种不同作用(图3),除部分电子束被样品吸收生热外,还产生不同种类的电子,如透过电子、弹性和非弹性散射电子、背散射电子、X-射线、俄歇电子以及二次电子等,采用不同特征的电子成像就产生了不同类型的电子显微镜. 例如:扫描电子显微镜用二次电子和背散射电子成像,透射电子显微镜用弹性和非弹性散射电子成像,借助具有能量特征的X-射线或具有电子能量损失特征非弹性散射电子可使扫描电子显微镜或透射电子显微镜具备材料成分分析功能.Fig. 2Sketch illustrating the working principle of electron microscope.Fig. 3Sketch shows different electrons generated after interaction of the incident electrons with the atoms in the sample.2样品制备由于电子的穿透能力非常差,只能穿透几毫米的空气或约1 µm的水. 因此,要求电镜观察用样品非常薄,在200 nm以内,最好控制在30~50 nm. 用于高分辨成像的样品需更薄,最好为10 nm左右. 因此,电镜样品的制备十分困难但非常重要,需要一定的技巧性. 一方面,要求样品足够薄,能使电子束透过成像;另一方面,要确保制备过程不破坏样品的内在微细结构. 另外,尽管电镜样品用不同目数的铜网支撑(通常为400目),如此薄的样品在上百万伏电压加速的电子束下并不稳定,如电子束轰击破碎、电子束下抖动等,从而需进一步加固样品. 基于需观察材料的品性和形态不同,甚至是同一种材料因不同的研究目的,制样方法也各不相同,从而发展了各种各样的制样方法. 下面将重点介绍一些常用的不同类型聚合物材料的电镜样品制备方法.2.1支撑膜制备支撑膜在电镜实验中十分常用,在纳米胶囊与颗粒等本身无法成膜样品的形态结构观察时,是必须使用的. 支撑膜的厚度一般为10 nm左右,要求稳定且无结构,常用的支撑膜有硝化纤维素(又称火棉胶)、聚乙烯醇缩甲醛和真空蒸涂的无定型碳,针对这些常用材料的薄膜制备方法如下.2.1.1硝化纤维素支撑膜制备硝化纤维素支撑膜可通过沉降和滤纸捞膜2种方法获得.沉降制膜法相对简单,初学者容易实现. 如图4(a)所示,用一个制膜器,在底部放置网格,将电镜铜网置于网格上方,然后注入蒸馏水,在蒸馏水表面滴加硝化纤维素的乙酸戊酯溶液,待乙酸戊酯溶液挥发成膜后,打开底部阀门排尽蒸馏水,硝化纤维素支撑膜便覆盖在铜网上,由此得到的带有硝化纤维素支持膜的铜网烘箱中50~60 ℃干燥后便可投入使用. 根据所需膜的厚度要求,硝化纤维素的乙酸戊酯溶液浓度可设定在0.5 wt%~1.5 wt%范围内. 对有经验的学者而言,滤纸捞膜法更简洁. 如图4(b)所示,用浓度为0.5 wt%~1.5 wt%的硝化纤维素乙酸戊酯溶液直接浇注在蒸馏水表面成膜后,将铜网整齐地放置在膜上,然后用滤纸平放在硝化纤维素膜的上面,并快速反转捞起带有硝化纤维素支撑膜的铜网,干燥后即可备用.Fig. 4Sketch illustrating the ways for preparing nitro cellulose (NC) supporting membrane used in electron microscopy experiments. (a) Sedimentation of the NC membrane on copper grids. (b) Filter paper fishing of copper grids supported by the NC membrane.2.1.2聚乙烯醇缩甲醛支撑膜制备硝化纤维素支撑膜制备方法也同样适用于聚乙烯醇缩甲醛(PVF)支撑膜的制备,但考虑到PVF的溶剂为氯仿,挥发速率很快,还可以通过玻片蘸取的方法获得. 如图5(a)所示,将沉浸于0.1 wt%~0.2 wt% PVF氯仿溶液中的表面光洁的载玻片(图5(a)左半部分)缓慢提起,并在充满这种溶液饱和气体的气氛中干燥(图5(a)右半部分),干燥后用刀片将载玻片边缘的PVF薄膜划破,通过漂浮的方法将PVF薄膜转移到蒸馏水表面(图5(b)),放置铜网后用滤纸捞起干燥即可获得含PVF薄层支撑膜的铜网.Fig. 5A diagram illustrating the preparation of PVF support film through dipping a clean glass slide into its chloroform solution (a) and then floating the thin PVF layer onto the surface of distilled water (b).2.1.3无定型碳支撑膜制备用电镜研究微粒状材料的结构、形状、尺寸和分散状态时,根据微粒材料的分散状况,主要有如下几种电镜样品的制备方法.(a) 悬浮法. 对在液体里分散均匀、沉降速度慢且无丝毫溶解能力的微粒,可制备浓度适当的均匀分散悬浮液,用微量滴管将悬浮液滴到有支撑膜的铜网上,干燥后使用.(b) 微量喷雾法. 用悬浮法将悬浮液直接滴在支撑膜上,在干燥过程中可能会引起微粒间的聚集. 为避免这种情况,可将悬浮液装入微量喷雾器,利用洁净的压缩气体使其产生极细雾滴,直接喷到带支撑膜的铜网上. 微量喷雾法能获得单分子分散的样品,是研究聚合物单分子结晶行为理想制样方法.(c) 干撒法. 对在干燥状态,相互间凝聚力不强且无磁性的微粒材料,可直接撒在带硝化纤维素或聚乙烯醇缩甲醛支撑膜的铜网上,用吸耳球吹掉未很好附着的微粒后即可使用.
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制