当前位置: 仪器信息网 > 行业主题 > >

自动时间分辨荧光免疫分析仪

仪器信息网自动时间分辨荧光免疫分析仪专题为您提供2024年最新自动时间分辨荧光免疫分析仪价格报价、厂家品牌的相关信息, 包括自动时间分辨荧光免疫分析仪参数、型号等,不管是国产,还是进口品牌的自动时间分辨荧光免疫分析仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合自动时间分辨荧光免疫分析仪相关的耗材配件、试剂标物,还有自动时间分辨荧光免疫分析仪相关的最新资讯、资料,以及自动时间分辨荧光免疫分析仪相关的解决方案。

自动时间分辨荧光免疫分析仪相关的资讯

  • 120万!福建省立医院全自动时间分辨荧光免疫分析仪采购项目
    项目编号:[3500]FJYS[GK]2022183项目名称:福建省立医院全自动时间分辨荧光免疫分析仪采购项目预算金额:120.0000000 万元(人民币)采购需求:品目号品目编码及品目名称采购标的数量(单位)允许进口简要需求或要求品目预算(元)中小企业划分标准所属行业1-1A02321900-临床检验设备全自动时间分辨荧光免疫分析仪1(套)是本项目为福建省立医院全自动时间分辨荧光免疫分析仪采购项目。具体详见招标文件1,200,000.00工业合同履行期限:自合同生效之日起至合同约定的合同义务履行完毕本项目( 不接受 )联合体投标。
  • 获批二类医疗器械|宇测生物单分子全自动荧光免疫分析仪
    2022年06月20日,苏州宇测生物科技有限公司旗下核心技术产品基于单分子分析策略的全自动荧光免疫分析仪Dx-90获得由江苏省药品监督管理局许可的二类医疗器械注册证批文(苏械注准20222221358)。Dx-90的获批预示着宇测生物在超敏免疫检测领域充分的领先优势,也预示着宇测生物在新型生物标志物超敏检测领域“产学研医”转换上将实现商业模式的完整闭环。单分子免疫检测技术开创新型生物标志物大航海时代苏州宇测生物科技有限公司是为数不多实现单分子免疫诊断技术产业化的高新科技型公司,核心技术具备完全自主知识产权。与传统免疫技术相比,宇测生物单分子免疫检测技术凭借超高分子信号识别分辨率,通过数字化单分子定量策略,打破了传统免疫检测技术瓶颈,实现近1000倍灵敏度的提升,其高通量、全自动、高灵敏度的单分子免疫技术平台使得逾千种低丰度生物标志物的临床应用成为可能。宇测生物单分子转化平台促进新型生物标志物临床转化迄今为止,宇测生物已打造“产学研医”新型生物标志物转化平台,结合开放式半自动单分子免疫检测系统和全自动单分子免疫诊断系统,提供生物标志物初筛——核心生物标志物试剂盒开发——临床单分子免疫检测产品转化的完整解决方案。以完全开放的心态寻求新型生物标志物的研发和临床转化,彻底解决新型生物标志物临床转化“卡脖子”问题。公司坚持“以精准检测成就人类健康,以科技创新创造无限未来”的创新理念,凭借扎实的科研能力和创新技术,不断研发有竞争力的产品,紧抓客户需求,引领国内单分子免疫诊断领域前行。关于苏州宇测生物苏州宇测生物科技有限公司成立于2019年04月02日,是实现单分子免疫诊断技术产业化的高新科技型公司,核心技术具备完全自主知识产权。公司坐落于苏州工业园区纳米城,拥有近6000平方米研发生产中心,已获得包括“金鸡湖领军人才”、“姑苏领军”、“省双创”等多项荣誉,获得国内顶级资本和国际生物医药产业巨头投资。公司坚持“始于精准,致于无限”的创新理念,致力于新一代单分子免疫诊断技术的研发与产业化。公司产品技术有效解决了国内单分子免疫诊断市场上“卡脖子”的问题,成功填补了这一领域发展前沿的空白,并有希望推进下一代免疫诊断技术的变革。
  • 江苏省分析测试协会立项《食品中黄曲霉毒素B1的快速测定 时间分辨荧光免疫层析法》等4项团体标准
    各有关单位:为贯彻落实国务院《深化标准化工作改革方案》,加快构建国家新型标准体系,积极有效地推进团体标准的制定工作,增加标准的有效供给。根据《中华人民共和国标准化法》《团体标准管理规定》《江苏省分析测试协会团体标准管理办法 (2022年修订版)》相关要求,经我会研讨、审查、组织专家评审、常务理事会审议通过,现就《食品中黄曲霉毒素B1的快速测定 时间分辨荧光免疫层析法》《挂面和方便面中脱氧雪腐镰刀菌烯醇的快速测定 时间分辨荧光免疫层析法》《食品中赭曲霉毒素A的快速测定 时间分辨荧光免疫层析法》《植物油中玉米赤霉烯酮的快速测定 时间分辨荧光免疫层析法》等4项团体标准进行立项公示,我会将牵头开展此团体标准的制订工作,特此公告。如有单位或个人存在异议,请在公告之日起7日内将意见反馈至我会秘书处。 联系人:周 明;13770810997;jsfxcsxh@163.com附件:1.《食品中黄曲霉毒素B1的快速测定 时间分辨荧光免疫层析法》团体标准申请表2.《挂面和方便面中脱氧雪腐镰刀菌烯醇的快速测定 时间分辨荧光免疫层析法》团体标准申请表3.《食品中赭曲霉毒素A的快速测定 时间分辨荧光免疫层析法》团体标准申请表 4.《物油中玉米赤霉烯酮的快速测定 时间分辨荧光免疫层析法》团体标准申请表江苏省分析测试协会2024年1月17日1.《食品中黄曲霉毒素B1的快速测定 时间分辨荧光免疫层析法》团体标准申请表.doc2.《挂面和方便面中脱氧雪腐镰刀菌烯醇的快速测定 时间分辨荧光免疫层析法》团体标准申请表.doc3.《食品中赭曲霉毒素A的快速测定 时间分辨荧光免疫层析法》团体标准申请表.doc4.《植物油中玉米赤霉烯酮的快速测定 时间分辨荧光免疫层析法》团体标准申请表.doc关于《食品中黄曲霉毒素B1的快速测定 时间分辨荧光免疫层析法》等4项团体标准的立项公告.pdf
  • 流式荧光技术动态|唯公全自动流式荧光发光免疫分析仪获证上市!
    流式免疫荧光技术简介流式免疫荧光技术,又称悬浮阵列、液相芯片等,是美国Luminex公司于上世纪末开发的新一代高通量发光检测技术。该技术有机整合了荧光编码微球、激光分析、流式液流系统及高速数据处理等多项最新科技,可以在临床诊断及生命科学研究领域得到广泛应用。它是最早被FDA认证的临床应用型高通量诊断技术,并于2005年被Frost&Sullivan授予“临床诊断技术革新大奖”。与化学发光等传统免疫技术相比,它最大的优势是可以在一个试管中实现几个、几十个甚至上百个项目的同时检测。流式免疫荧光技术的低谷在21世纪初,当Luminex推出具有专利保护的磁性荧光编码微球和Luminex 200分析仪的高通量检测整体解决方案时被众多专业人士广泛看好,相对于化学发光的技术,其优势可谓“风光无限”。然而,在接下来临床免疫领域迅速发展的20年中,以Luminex为代表的高通量检测技术产品被化学发光产品远远甩在身后,令人扼腕叹息。在与传统的化学发光技术的竞争中无法充分发挥其多联检的优势,一个很重要的原因就是Luminex垄断了磁性编码微球技术,但没能为高通量流式荧光免疫检测推出一个全自动化检测平台,无法提供一个类似化学发光分析仪的自动化解决方案,也因此没有跟上临床医学实验室自动化发展的前进步伐。全自动流式荧光免疫分析仪的尝试2010年后,国内外有多个生产商曾推出几款全自动荧光免疫分析仪,如美国Bio-Rad公司的Bioplex 2200,国内上海透景公司的TESMI。但由于没有掌握流式免疫荧光中的光学检测和编码微球等核心技术,在购买Luminex 磁性编码微球开发相关试剂的同时,往往还需要购买Luminex的专有仪器或光学检测模块,不仅导致仪器、试剂的成本和价格居高不下,而且也限制了配套试剂使用的平台,在与化学发光的竞争中始终处于不利地位。唯公科技的技术发展之路“关键核心技术是要不来、买不来的,不能被别人卡脖子!”实践反复告诉我们,关键核心技术是要不来、买不来的,没有核心技术就会被别人卡脖子!图 1 唯公科技开发的EasyPlex 2200流式荧光发光免疫分析仪唯公科技经过多年的技术攻关,在取得多重磁性荧光编码微球技术重大突破后,再次打赢核心技术攻坚战,其依靠扎实强大的研发功底,设计开发出中国第一台基于自主磁性编码微球的全自动流式荧光发光免疫分析仪(EasyPlex 2200),并在近期获得了药监部门颁发的医疗器械II类注册证,批准上市销售!图 2 唯公科技开发的EasyMagPlex有磁荧光编码微球唯公科技在2017年成立之初,就把“掌握核心科技,展现中国创新实力”作为自己发展的基础和目标,把创新主动权、发展主动权牢牢掌握在自己手中,以全自动流式荧光技术中最核心的多色荧光检测、有磁荧光编码微球、自动样本前处理等作为突破点,进行重点攻坚,并取得一系列的突破,其中包括:2019年——突破了有磁荧光编码微球核心技术,展示了具有开发多维磁性编码微球的能力,实现了12重编码微球(EasyMagPlex)的量产,而且编码微球兼容主流的流式细胞分析仪。随后陆续推出了6、7、12联检细胞因子检测试剂以及多联检肿瘤标志物检测试剂;2019年——突破了多色荧光检测技术,并陆续推出了一系列多光多色色的EasyCellTM流式细胞仪,实现了多重细胞因子联检自动分析;2020年——进一步提升其磁性编码微球的能力,达到108重编码。开始30重编码微球的量产和50重编码微球的试产,为合作伙伴提供了更多联检的可能,后续又完成了具有自动分析能力的多重编码微球分析软件(WellCKAS)的II类注册证;2021年——突破了全自动样本前处理技术,并陆续推出了EasySamplerTM和EasySampler CTM全自动流式样本制备系统,实现了基于磁性编码微球的多重联检试剂制备自动化;2022年——完成了可自动分析的50重磁性编码微球,满足了多重自身免疫抗体、过敏原等多重检测的需求;2022年——整合多色荧光检测、磁性荧光编码微球和全自动样本制备技术,推出了国内第一台完全基于自身技术的全自动流式荧光发光免疫分析仪(EasyPlex2200),实现了“样本进,结果出”的全程自动化。未来,唯公科技将在全自动流式荧光发光免疫分析仪的设计和开发上不断推陈出新,以EasyPlex 2200为基础,继续打造通用、开放的全自动流式荧光发光免疫检测平台,推出细胞因子、肿瘤标志物、自身免疫抗体等多联检试剂,并以开放的心态,积极与国际、国内合作伙伴在全自动检测设备、磁性荧光编码微球和更多的多重联检试剂开发等方面展开全方位合作,共同开拓全球的高通量流式荧光发光免疫检测市场。
  • 打破垄断 中科院企业共制全自动荧光免疫分析仪问世
    p style="text-align: center "img src="http://img1.17img.cn/17img/images/201803/noimg/978f6695-5ee9-4c47-a7f8-755a789d2daa.jpg" title="0.jpg"//pp  从2013年8月份开始启动研发计划,到2018年3月正式对外发布产品,在四年多的时间里,这款全自动荧光免疫分析仪见证了科研院所与企业共同合作,进行科技成果转移转化的全过程。/pp  “5、4、3、2、1”,3月17日,伴随着现场倒计时,中科院苏州医工所与苏州鼎实医疗科技有限公司(以下简称苏州鼎实)共同研发的全自动荧光免疫分析仪在第十五届检验医学暨输血仪器试剂博览会上顺利亮相。/pp  从2013年8月份开始启动研发计划,到2018年3月正式对外发布产品,在四年多的时间里,这款全自动荧光免疫分析仪见证了科研院所与企业共同合作,进行科技成果转移转化的全过程。/pp strong “市场牵引 双轮驱动”下的合作/strong/pp  “我们的研发起源于一次巧合”,中科院苏州医工所副研究员程文播告诉《中国科学报》记者:“2012年前后我们针对免疫分析仪申报了一项技术专利,当时也没有更多的后续计划。没想到苏州鼎实通过网络搜索,看到了这项专利,他们主动找到所里,认为可以在科研成果转化方面做文章。”/pp  就是这样一次机缘,让“技术”和“市场”擦出了火花。/pp  干式免疫分析检测技术作为体外诊断技术之一,在免疫指标检测产品中得到了广泛的应用。“我们希望可以结合干式免疫分析检测技术与自动化技术,研制出一款可单人份检测的、避免交叉污染,并且高度智能化的检测产品。”苏州鼎实总经理席秋子说。/pp  2013年,所企双方签订合作协议,共同研发全自动荧光免疫分析仪及配套试剂,投入资金900万元。/pp  程文播表示,双方分工明确、互相配合。在人员团队方面,苏州医工所所领导极其重视,科研管理部门积极参与,为项目的顺利实施提供了政策和机制保障。苏州医工所先后投入了20余位科研人员负责产品的原理验证、关键技术攻关、整机研发,同时,苏州鼎实也投入20余人负责产品的工艺改进、注册检验等。/pp  程文播说:“项目在2015年就设计完成了第一代样机,可以实现预期功能。但经过自我评估后,我们觉得并未达到理想状态,因此经过艰难的抉择,团队决定对第一代产品进行重新设计,最终在2018年完成了第二代样机的设计。”/pp  对于一项新产品,研发过程既不易又烦琐。程文播掰着指头告诉记者:“我们先后经历了研发、工程化、产品注册、批量生产等多个阶段,最终推出了目前的自动化免疫分析系统。”/pp strong 自主创新打破欧美市场垄断/strong/pp  据记者了解,产品的核心技术来源于“CRP侧向流免疫层析试纸条及其配套用全自动荧光免疫检测仪器”项目,由苏州医工所研究员王弼陡、尹焕才和程文播带领三个团队共同合作完成。项目产生了发明专利7件,实用新型专利11件,软件著作权1项。以姑苏科技创业天使计划和苏州高新区领军人才项目为牵引,形成了具有自主知识产权的自动干式荧光免疫分析仪及配套试剂技术。/pp  席秋子说:“我们将自动化控制、微量液体加样、互联网远程数据分析、无线测量分析控制、免疫荧光侧向层析技术、标准化试剂溯源流程控制等科技手段相融合,研制出可快速定量检测人体内特定蛋白的体外诊断产品,为临床疾病诊断提供准确、有效的判读依据。”/pp  据了解,这台全自动荧光免疫分析仪可以用于感染因子、心脏标志物、肿瘤标志物、传染性疾病、微生物病原体等指标检测,通过自主创新,成功打破了由欧美日等发达国家长期垄断全自动临床检验分析类仪器中高端市场的格局。/pp  在产品发布现场,记者看到每个仪器都连接了一个平板电脑。程文播说:“我们研制了专门的软件系统。通过PAD与机器无线连接,使检验人员摆脱了物理空间约束,未来还支持结果的远程传输,一台终端同时控制多台机器,可以进一步提高检验效率。”他表示整机体积是同类产品的三分之二,在保持每小时60个通量的同时,集成了多个自动化部件,实现了从样本进样到最终检测的全过程的顺利运行。/pp  与此同时,全自动荧光免疫分析仪采用了纯干式解决方案,通过一次性吸头,提高了结果的准确性,彻底避免了检测样本交叉污染的困扰 独创的样品自动摇匀系统,可有效避免全血样本凝血的产生。通过国内最小检测卡机弹夹机构的设计,大大缩小了检测卡厚度。/pp  席秋子告诉记者,全自动荧光免疫分析仪是国内首家实现自动脱帽功能的产品,通过自行设计的小型XYZ机械臂配合自动微量移液器,配合小型耗材、圆盘式的结构以及脱帽结构,实现了移动灵活、精度高、取样加样精准和检测准确的需求。/ppstrong  未来市场大有可为/strong/pp  现在,通过科研团队的努力,全自动干式荧光免疫分析仪已取得了产品注册证,C反应蛋白和降钙素原定量检测试剂盒已取得临床报告,降钙素原、C反应蛋白联合、血清淀粉样蛋白A以及胃蛋白酶原I、胃蛋白酶原II联合等8种定量检测试剂盒已取得型检报告。/pp  席秋子告诉记者,随着生活水平的不断提高和人口老龄化的不断加剧,人们对健康问题的关注和需求也发生了根本性的变化,“精准诊断”已成为未来整个健康和检验行业所关注的核心问题。/pp  体外诊断产品行业不断发展和技术进步给检验行业注入了新的活力,其中现场快速检验设备因为可以在床旁检测、所需样本量少、结果报告时间短以及易于实现智能化等优势,已经成为检验领域的一颗新星。/pp  面对巨大的市场需求和空白,苏州医工所和苏州鼎实也有了新的合作计划和目标。未来五年,苏州医工所还将努力构建“人才、科技、产业、资本、市场”五位一体的集团式新型研发机构,为“健康中国”战略和中科院“率先行动”计划奋勇拼搏。/pp  席秋子说:“现在产品已经投入河北、江苏等省市,未来我们将制定目标销售计划,有计划兼并同行细分龙头企业,并参股控股同类有特点的中小型上下游关联企业或区域经销公司,进行生态圈的建设。”/p
  • 又一家全自动流式荧光免疫分析仪正式获批上市!
    12月29日,宜乐芯全自动流式荧光免疫分析仪P16获四川省药品监督管理局医疗器械注册证(注册证编号:川械注准2022220241),批准正式上市销售!这是宜乐芯继全球最小发光后推出的又一款战略级重磅产品,充分体现了宜乐芯在IVD细分领域硬核的创新能力。2021年四川省唯一创新IVD产品全球首创单人份全自动流式荧光多重检流式荧光原理流式荧光又被称为液相芯片,多重荧光免疫,是以流式细胞术为核心,结合荧光编码微球技术,使每一个微球成为一个特定的检测单元,在鞘流的包裹下,逐个通过流动室的激光聚焦区,微球上的荧光物质被激光激发后,编码荧光信号及反应物荧光信号会被分别记录,最终通过软件处理获得待检测物质的浓度。P16特点全自动:样本进、结果出,30个原始管进样位,随到随检;单人份:单人份多指标耗材一体化分装,即开即用,无开瓶有效期;多重检:经典流式荧光方法学,通过编码微球实现精准多联检;速度快:最快760T/H,超越大型发光的检测速度;高灵敏:细胞因子检测下限可达1pg/ml;高精准:CV≤5%;体积小:流式技术与POCT完美结合,xPOCT横空出世,应用场景多元;全原研:自研编码微球、自研流式系统、自研细胞因子试剂盒,无惧封锁,尽在掌控。MaxPlex编码微球近期,新冠导致的重症患者越来越多,细胞因子作为非常重要的重症监测指标,有着非常重要的临床价值,宜乐芯推出了4、7、12联检细胞因子检测试剂,灵敏度最高可达1pg/ml,配合P16全自动流式荧光,实现了真正的全自动细胞因子检测,可以为重症患者监测保驾护航。关于宜乐芯宜乐芯生物成立于2018年8月,致力于通过硬核创新,实现全链可控,为临床提供高性价比的临床免疫及分子诊断系统,力争在未来10年成为全球体外诊断细分领域的创新者。创始团队在IVD行业耕耘多年,具有深厚的研发功底及产业化能力。通过突破上游核心部件、整合前沿科技、跨界组合创新、精准市场定位,实现差异化竞争,为客户提供5A级产品—Anytime,Anyplace,Anyone,Affordable, Accuracy。公司现有POCT全自动化学发光、全自动液相芯片、实验室自动化三大技术平台,在成都国际医学城有近4000平米的产业化基地。我们将持之以恒聚焦临床需求、推动价值创新,为客户提供极具竞争力的产品和服务,同时我们秉持开放合作,可以提供从仪器定制、试剂匹配、授权开放、CDMO委托生产、产品注册等一站式产品和服务。
  • 梅里埃对528台全自动荧光免疫分析仪主动召回
    p  梅里埃诊断产品(上海)有限公司报告,涉及产品因移液泵的堵塞和固相管顶端小贴纸的异位造成仪器光路检查液报警问题,梅里埃诊断产品(上海)有限公司对全自动荧光免疫分析仪(注册证号:国械注进20163404729)主动召回。召回级别为三级。涉及产品的型号、规格及批次等详细信息见《医疗器械召回事件报告表》。/pp  附件:医疗器械召回事件报告表/pp style="text-align: center "img title="gov_1526072996292.jpg" src="http://img1.17img.cn/17img/images/201805/insimg/9d34e410-5007-41ce-b590-300876777c94.jpg"//pp style="text-align: center "img title="gov_1526072997367.jpg" src="http://img1.17img.cn/17img/images/201805/insimg/108c1d76-99cc-40c0-9fd2-1e2d2446412d.jpg"//ppbr//p
  • 国家粮食和物资储备局发布《粮油检测 谷物中赭曲霉毒素A的测定 时间分辨荧光免疫层析快速定量法》等7项行业标准征求意见稿
    各有关单位:我们组织起草的《全谷物与全谷物食品通则》等7项行业标准已形成征求意见稿,现向社会公开征求意见,截止日期为2023年10月3日。请将意见和建议反馈至全国粮标委原粮及制品分技术委员会(TC270/SC1)秘书处。联系人:陈园 010-58523656电子邮箱:tc270sc1@ags.ac.cn附件:1.全谷物与全谷物食品通则2.糙米米粉、线(干)3.全麦挂面4.易煮全谷物米5.粮油检验 小麦粉曲奇加工品质试验6.粮油检测 谷物中玉米赤霉烯酮的测定 时间分辨荧光免疫层析快速定量法7.粮油检测 谷物中赭曲霉毒素A的测定 时间分辨荧光免疫层析快速定量法8.意见反馈表国家粮食和物资储备局标准质量管理办公室2023年8月2日(此件公开发布)
  • 新品:肯辛顿微流控芯片-时间分辨免疫荧光POCT体外诊断系统
    p style="text-indent: 2em "2018年6月29日,在江苏宜兴召开的中国分析测试学会标记免疫分析专业委员会2018学术峰会新品发布会上,南京肯辛顿诊断科技有限公司杨昕博士介绍了该公司微流控芯片-时间分辨免疫荧光POCT体外诊断系统。/pp style="text-align: center "img title="1.jpg" src="http://img1.17img.cn/17img/images/201807/insimg/3a2b376a-7973-4075-920a-6da7adfef993.jpg"//pp style="text-indent: 2em "传统诊断中,大量时间被浪费在样本运送到中心实验室、组织标本前处理、标记、录入、分发等方面,核心反应及分析时间占比极低。与之相比,POCT诊断进行了步骤精简,依靠其便携及反应快速等优势,集成了“采样-分析-质控-输出”步骤为一体,从而很大程度降低了诊断时间,为患者在最佳时间窗口就诊获得了最大便利。/pp  早期的POCT发展始于20世纪中期,主要是以干化学试纸检测血糖及尿糖。此后免疫层析和斑点金免疫渗滤等免疫测定技术推动了感染性疾病、心脏标志物等POCT技术发展。基于微流控技术的生物芯片的出现对POCT是一个重大转折,依靠微流控芯片技术,POCT已经逐步能够实现多靶向,高通量,无需样本前处理的功能。并且在通信技术逐步成熟的基础上,POCT正在向远程数据中心等方向发展。未来的POCT产品能够在便捷,可穿戴,快速进行检测分析的同时,整合远程数据终端和医疗资源进行最佳治疗,从而实现构建真正的大健康体系。/pp  国家十三五规划关于人口健康技术专栏中明确指出:“。。。需要突破微流控芯片、单分子检测、自动化核酸检测等关键技术,开发全自动核酸检测系统、高通量液相悬浮芯片、医用生物质谱仪、快速病理诊断系统等重大产品,研发一批重大疾病早期诊断和精确治疗诊断试剂以及适合基层医疗机构的高精度诊断产品,提升我国体外诊断产业竞争力。”/pp  因此,基于POCT技术的床旁快速诊断成为了IVD行业中蓬勃发展的子行业之一。凭借快速、便捷的优势,加之新兴技术不断涌现,人口老龄化,二胎潮,政策支持,使得POCT成为IVD领域内快速增长的蓝海,即便是在欧美成熟市场中亦保持着稳健的增长。/pp  现场报告中介绍,利用专利的微流控芯片技术,结合特殊的荧光生物反应定量试剂盒,开发出仅用几滴血就能在床旁实现疾病快速检验的系统POCT 。/pp  该系统主要由检测器(读数器)、诊断试剂、卡盒芯片三个部分组成,整个系统均为自主研发。该系统可以用于检测心梗、心衰、凝血标志物、细菌和病毒感染标志物的检测。/pp  目前国内市场大多为国外产品所占据,传统检验科检测需要1至2个小时,而以美艾利尔公司经典微流控POCT产品 Triage为例,检测时需200微升的全血才可在15分钟内完成对心脏标志物的检测。/pp style="text-indent: 2em "肯辛顿项目产品的优势与传统技术产品对比见下表。/ptable border="1" cellspacing="0" cellpadding="0"tbodytr class="firstRow"td width="126" valign="top" style="padding: 0px 7px border: 1px solid windowtext border-image: none background-color: transparent "p style="text-align: center -ms-layout-grid-mode: char "strongspan style="font-family: 宋体 font-size: 16px "性能指标/span/strong/p/tdtd width="208" valign="top" style="border-width: 1px 1px 1px 0px border-style: solid solid solid none border-color: windowtext windowtext windowtext rgb(0, 0, 0) padding: 0px 7px border-image: none background-color: transparent "p style="text-align: center -ms-layout-grid-mode: char "strongspan style="font-family: 宋体 font-size: 16px "传统技术(国内市场产品)/span/strong/p/tdtd width="208" valign="top" style="border-width: 1px 1px 1px 0px border-style: solid solid solid none border-color: windowtext windowtext windowtext rgb(0, 0, 0) padding: 0px 7px border-image: none background-color: transparent "p style="text-align: center -ms-layout-grid-mode: char "strongspan style="font-family: 宋体 font-size: 16px "本项目创新技术/span/strong/p/td/trtrtd width="126" valign="top" style="border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) windowtext windowtext padding: 0px 7px border-image: none background-color: transparent "p style="text-align: center -ms-layout-grid-mode: char "strongspan style="font-family: 宋体 font-size: 16px "检测样本要求/span/strong/p/tdtd width="208" valign="top" style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent "p style="text-align: center -ms-layout-grid-mode: char "span style="font-family: 宋体 font-size: 16px "手臂静脉血(专业采集)/span/p/tdtd width="208" valign="top" style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent "p style="text-align: center -ms-layout-grid-mode: char "span style="font-family: 宋体 font-size: 16px "静脉/指尖血(非专业人士)/span/p/td/trtrtd width="126" valign="top" style="border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) windowtext windowtext padding: 0px 7px border-image: none background-color: transparent "p style="text-align: center -ms-layout-grid-mode: char "strongspan style="font-family: 宋体 font-size: 16px "检测样品量/span/strong/p/tdtd width="208" valign="top" style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent "p style="text-align: center -ms-layout-grid-mode: char "span style="font-family: 宋体 font-size: 16px "150-200/spanspan style="font-family: 宋体 font-size: 16px "微升全血/血清/span/p/tdtd width="208" valign="top" style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent "p style="text-align: center -ms-layout-grid-mode: char "span style="font-family: 宋体 font-size: 16px "5/spanspan style="font-family: 宋体 font-size: 16px "微升血清/30微升全血/span/p/td/trtrtd width="126" valign="top" style="border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) windowtext windowtext padding: 0px 7px border-image: none background-color: transparent "p style="text-align: center -ms-layout-grid-mode: char "strongspan style="font-family: 宋体 font-size: 16px "检测时间/span/strong/p/tdtd width="208" valign="top" style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent "p style="text-align: center -ms-layout-grid-mode: char "span style="font-family: 宋体 font-size: 16px "20/spanspan style="font-family: 宋体 font-size: 16px "分钟/span/p/tdtd width="208" valign="top" style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent "p style="text-align: center -ms-layout-grid-mode: char "span style="font-family: 宋体 font-size: 16px "5-10/spanspan style="font-family: 宋体 font-size: 16px "分钟/span/p/td/trtrtd width="126" valign="top" style="border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) windowtext windowtext padding: 0px 7px border-image: none background-color: transparent "p style="text-align: center -ms-layout-grid-mode: char "strongspan style="font-family: 宋体 font-size: 16px "最低检测限/span/strongstrongspan style="font-family: 宋体 font-size: 16px "和线性范围/span/strong/pp style="text-align: center -ms-layout-grid-mode: char "strongspan style="font-family: 宋体 font-size: 16px "(以PCT为例)/span/strong/p/tdtd width="208" valign="top" style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent "p style="text-align: center -ms-layout-grid-mode: char "span style="font-family: 宋体 font-size: 16px "0.2 ng/ml/span/pp style="text-align: center -ms-layout-grid-mode: char "span style="font-family: 宋体 font-size: 16px "1ng/ml– 50 ng/ml /span/p/tdtd width="208" valign="top" style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent "p style="text-align: center -ms-layout-grid-mode: char "span style="font-family: 宋体 font-size: 16px "0.1ng/ml/span/pp style="text-align: center -ms-layout-grid-mode: char "span style="font-family: 宋体 font-size: 16px "0.1ng/ml– 50 ng/ml/span/p/td/trtrtd width="126" valign="top" style="border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) windowtext windowtext padding: 0px 7px border-image: none background-color: transparent "p style="text-align: center -ms-layout-grid-mode: char "strongspan style="font-family: 宋体 font-size: 16px "检测器大小/span/strong/p/tdtd width="208" valign="top" style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent "p style="text-align: center -ms-layout-grid-mode: char "span style="font-family: 宋体 font-size: 16px "台式机/span/p/tdtd width="208" valign="top" style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent "p style="text-align: center -ms-layout-grid-mode: char "span style="font-family: 宋体 font-size: 16px "便携机/span/p/td/trtrtd width="126" valign="top" style="border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) windowtext windowtext padding: 0px 7px border-image: none background-color: transparent "p style="text-align: center -ms-layout-grid-mode: char "strongspan style="font-family: 宋体 font-size: 16px "检测器性能/span/strong/p/tdtd width="208" valign="top" style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent "p style="text-align: center -ms-layout-grid-mode: char "span style="font-family: 宋体 font-size: 16px "变异系数CV值 15-20%%/span/p/tdtd width="208" valign="top" style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent "p style="text-align: center -ms-layout-grid-mode: char "span style="font-family: 宋体 font-size: 16px "变异系数CV值 5-10%/span/p/td/trtrtd width="126" valign="top" style="border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) windowtext windowtext padding: 0px 7px border-image: none background-color: transparent "p style="text-align: center -ms-layout-grid-mode: char "strongspan style="font-family: 宋体 font-size: 16px "适用单位/span/strong/p/tdtd width="208" valign="top" style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent "p style="text-align: center -ms-layout-grid-mode: char "span style="font-family: 宋体 font-size: 16px "医院急诊科室/span/p/tdtd width="208" valign="top" style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent "p style="text-align: center -ms-layout-grid-mode: char "span style="font-family: 宋体 font-size: 16px "医院急诊科,社区医院,地方诊所,家庭/span/p/td/tr/tbody/tablep  南京肯辛顿诊断科技有限公司是一家由南京321项目获得者,江苏省双创人才, 江苏特聘教授,海归博士,国内外医学专家,联合创立的一家致力于开发国际前沿诊断科技产品的高新科技企业。/p
  • 时间分辨阴极荧光分析系统助力CdTe光电薄膜晶界空穴行为分析研究
    CdTe薄膜太阳能电池由于高能量效率获得科学家广泛的关注,目前共焦显微荧光光谱经常被用于研究CdTe薄膜高转换效率载流子机制。然而时间分辨的共焦显微荧光方法由于其微米的空间分辨率,不能完全认为CdTe薄膜晶界产生的长寿命缺陷是由于氯掺杂钝化成深度重组能造成的。英国Durham大学Mendis教授联手利物浦大学,利用高空间分辨、能量分辨和时间分辨的阴荧光方法,表征了电子和空穴在CdTe境界的传输和空穴在晶界缺陷的长寿命束缚行为。图1 CdTe薄膜在12K温度下阴荧光光谱 Mendis教授研究组借助瑞士attolight公司生产的Alalin Chronos 4027系统,CdTe薄膜晶粒中和晶界处激子,缺陷发光行为进行表征。这套分析系统兼具连续阴荧光谱采集和皮秒时间分辨阴荧光谱采集功能,低工作温度4K,空间分辨率好于10nm。研究的样品是采用磁控溅射方法制备而得的CdTe薄膜,理论上该材料能实现28%的光电转换效率,在太阳能电池领域有广泛的应用。 图2 12K低温下脉冲激发CdTe薄膜得到的时间分辨的荧光光谱,a 晶粒G1和晶界GB的时间积分荧光光谱;b 中性受主束缚激子发光eA0 和c 施主受主对跃迁发光的时间寿命 Mendis教授利用Alalin Chronos 4027系统对CdTe薄膜晶粒进行阴荧光光谱探测,先采用连续模式得到的是样品128×128pixel的高光谱数据(图1a,图像上每个像素点都有光谱信息)以及对应晶粒和晶界的荧光光谱(图1b),在图1a的高光谱数据中分离出受主束缚激子发光波长(A0X,图1c);自由电子受主缺陷发光(eA0图1d);施主受主对发光(DAP图1e)。分析得知受主缺陷在样品晶界处分布较多。切换至脉冲模式进一步研究,得知晶界缺陷态具有较长的荧光寿命(图2),进一步阐释了CdTe薄膜中,晶界晶粒间的载流子动力学问题。(B. G. Mendis,Long Lifetime Hole Traps at Grain Boundaries in CdTe Thin-Film Photovoltaics,Phys. Rev. Lett. 2015, 115, 218701)相关产品链接attolight CL-STEM阴荧光分析系统http://www.instrument.com.cn/netshow/SH100980/C242971.htm
  • 2125万!南方科技大学电子系高分辨定量阴极荧光分析仪采购项目
    项目编号:AOMC-2022-057(SZDL2022001503)项目名称:电子系高分辨定量阴极荧光分析仪采购预算金额:2125.7000000 万元(人民币)最高限价(如有):2125.7000000 万元(人民币)采购需求:详见原公告合同履行期限:签订合同后 270 天(日历日)内交货本项目( 不接受 )联合体投标。
  • 法国Cordouan发布Vasco Kin原位时间分辨纳米粒度分析仪新品
    Vasco Kin原位时间分辨纳米粒度分析是新一代动态光散射纳米粒度分析仪,通过远程光学探头,进行原位非接触测量和反应动力学,用于监测纳米颗粒的合成、团聚或悬浮液稳定性的研究或监测。常用于实时纳米颗粒合成过程监控, 核反应堆内现场测量,与其它粒度特性测量仪器联用(如光谱仪、SAXS等)。粒度测量范围 : 0.5nm 到 10μm背向动态光散射原理,实时远程非接触测量监测纳米颗粒合成过程;监测整个过程的粒度变化情况,有助于稳定性研究全自动非接触测量:能穿透玻璃和塑料针管,测定包装物及反应釜中的粒度分布和随时间的变化适用样品浓度:0.1ppm-40%(w/v)时间分辨: DLS的分辨率为0.2s,用于动力学监测随时间变化的粒度分布彩色地形图“时间切片”功能:用户对测试后数据可进行任意时间段内的粒度分析样品前处理:无需样品前处理,直接测试硬件规格(核心单元):1. 激光源: 高稳定性激光二极管(可选蓝光和绿光)2. 探测器: 无伪影雪崩光电二极管(APD)3. 计算设备: 内嵌专用电脑4. 数据处理: NanoKin 相关和分析软件5. 典型测量时间:最快200ms。测量时间由样品和测量设置决定6. 操作条件/存储条件:15℃ ~ 40℃ / -10℃ ~ 50℃ – 非冷凝相对湿度 70% 7. 尺寸/重量: 220 x 220 x 64 mm (上半部分) / 2.5 kg 220 x 220 x 48 mm (下半部分) / 2.8 kgNano Kin™ 软件的主要特点: - 三个层级登录配置文件:管理员、专家、操作员 - 运行模式:包括测量、模拟、后分析(导入) - 直观导航(顺序) - 时间切片和动力学模式:独特的技术,允许监测快速动力学和/或准确的再现性测量(时间分辨率高达200毫秒)。 - 可读数据和绘图: - 动态导出数据/绘图(右键单击到剪贴板) - 报告文件格式:.pdf或.rtf(兼容writer软件) - 反转算法:- CUMULANTS 累积量算法:用于具有单分散趋势的单峰样品 - PADE-LAPLACE算法(专有):多峰样品的离散数学方法。 - 稀疏贝叶斯学习算法(SBL;专有):多峰样品的连续分布数学方法。对于所期望的分布斜率不需要先验知识,正则化参数自学习概率计算模块。创新点:VASCO 原位在线纳米粒度分析仪是基于光纤动态光散射(DLS)技术的纳米级悬浮和胶体特性的独特表征仪器。监测纳米颗粒合成,团聚或悬浮体系稳定性研究,帮助您实时分析样品动力学。独特的“时间切片” 功能允许VASCO KinTM 用户对测试后的数据进行任意时间段内的粒径分析。用户可以获得所选时间尺度的相应的相关图和粒度分布。稳频激光光源,雪崩光电二极管(APD)探测器;可直接测量亚纳米样品(如蛋白质),无需稀释,测量精度高 。Vasco Kin原位时间分辨纳米粒度分析仪
  • 获证上市|指真生物流式荧光发光免疫分析仪可实现多种分泌性蛋白多联检
    日程&报名:https://www.instrument.com.cn/webinar/meetings/icfcm2023/指真生物经过多年流式细胞仪研发生产积累,以及自主研发、自主生产的多重磁性荧光编码微球技术积累,突破掌握了全自动流式荧光发光免疫分析技术,并设计开发了领先的重磅新品:HighFlux系列全自动流式荧光发光免疫分析仪。此系列仪器近期在北京市药品监督管理局获批上市。该技术平台融合流式检测技术、激光分析技术、荧光编码微球技术、生物标记技术及数字信号转换技术为一体,在同一反应体系中可对多种指标进行快速、定量检测,从而实现多种分泌性蛋白多联检,满足临床诊断或基础科学研究需求。HighFlux系列全自动流式荧光发光免疫分析仪技术原理基于指真生物自主研发的荧光编码微球系统,通过微球内部两种不同浓度荧光染料的排列组合,形成数十种不同荧光编码微球。将不同种类单克隆抗体偶联至荧光编码微球表面,形成“抗体-荧光编码微球”复合物,再利用“夹心法”或“竞争法”检测样本中对应待测物的浓度,实现多联检。解决的问题与痛点在医院检验科,目前最常用免疫检验技术---化学发光法,但化学发光法也有技术瓶颈---单指标检测。在二甲以上医院,它的检测效率往往无法满足高速增长的临床检测量,让院方非常头疼。要想解决这个矛盾,常规方法一是增加检测仪器,但这对医院场地和科室成本提出了较高的要求;二是增加单机检测效率,如使用联检技术等。指真生物HighFlux系列产品同时解决了这两个问题:1、解决单指标检测,HighFlux实现多联检、高通量HighFlux产品最大检测通量为120样本/h,每管内可实现多指标联检。举例来说,12因子检测可以实现1440测试/h,单位时间大幅度提高了检测通量。2、HighFlux体积小巧,节省实验室空间,提高空间利用率HighFlux产品为桌面机,产品尺寸:70cm(W)×90cm(D)×65cm(H)。1台化学发光仪器空间可以摆放3台HighFlux仪器,极大节省实验室空间。配套检测菜单细胞因子系列产品包含临床上常用的细胞因子检测试剂,主要有IL-1β/IL-2/IL-4/IL-5/IL-6/IL-8/IL-10/IL-12p/IL-17/TNFα等。主要临床应用:辅助疾病诊断、感染早期诊断;评估感染严重程度、细胞因子风暴监测;免疫状态评估、用药检测及预后等。肿瘤标志物覆盖常见的肿瘤标志物检测试剂,包括肺癌测定试剂盒、神经元特异性烯醇化酶(NSE)、癌胚抗原(CEA)、角蛋白19片段(CYFRA21-1)、鳞状细胞癌抗原(SCCA)、胃泌素释放肽前体(ProGRP)。感染评价指标涵盖临床常用的四种感染评价指标,实现一机检测感染。主要检测试剂有SAA/CRP联检试剂(1:200)、C-反应蛋白(CRP)(1:200)、PCT/IL-6联检试剂、降钙素原(PCT)、白介素6(IL-6)。性激素检测八种性激素检测试剂,主要有促卵泡生成素(FSH)、促黄体生成素(LH)、抗缪勒管激素(AMH)、泌乳素(PRL)、β-人绒毛膜促性腺激素(β-HCG)、睾酮(T)、孕酮(P)、雌二醇(E2)。持续开发中......
  • 阿基米德发布Archimed X6时间分辨荧光定量PCR新品
    Archimed是鲲鹏基因汲取定量PCR技术发展之精华,由国际化资深技术团队匠心打造的全球首款时间分辨实时荧光定量PCR系统。基于菲涅尔透镜的新型光路系统、专利的时间分辨信号采集技术及独特的控温技术,使Archimed在检测灵敏度、光路串扰、温度均一性及准确性等方面引领国际先进水平。同时,基于全球视野的产品设计理念及制造工艺,赋予Archimed国际水准的优异品质。 精益求精,恒久品质Constant Perfection,Constant Quality 卓越品质:• 创新的光学检测系统——更高的灵敏度• 专利的时间分辨信号采集技术——更少的光路串扰• 独特的镂空式温控模块——更稳定快速的热循环控制• 人性化且功能完备的软件——更全面的应用、更简易的操作• 高性价比——更新的技术、更合理的价格• 即装即用——无需调试校正,更低维护成本• 全方位的售后服务——更值得信赖的合作伙伴 广泛应用:• 基因表达分析 • 基因分型 • 基因突变检测 • 病原体检测• 转基因检测 • 蛋白热稳定性分析 • miRNA研究 • 遗传分析技术创新,引领未来Innovation for Excellence Archimed光学检测系统核心优势:• 高灵敏 • 防串扰 • 快速检测 • 免校正 • 免维护 光路系统示意图Archimed温控模块核心优势:• 杰出的温度均一性及准确性,孔间温度均一性及准确性可达±0.2℃;• 极佳的升降温速率,模块最大升降温速率6℃/秒,样品最大升降温速率2.7℃/秒;• 无温度边缘效应 温控模块示意图性能优异,结果可靠Excellent Performance,Reliable Results 极佳的性能表现:• 温度均一性和准确性达到±0.2℃,确保极高的数据重复性(SD0.05)。• 低至1.33倍的高分辨率和宽广的线性范围(10 logs),确保优异的数据准确性。• 杰出的防串扰多色检测性能,确保日益增长的多重数据需求。 高重复性(Ct SD≤0.05) 高分辨率(低至1.33倍) 宽广的线性范围(10 Logs) 多色防串扰 智能分析,多样应用Intelligent Analysis,Multiple Applications 智能便捷的软件系统:• 灵活的程序设定和操作向导; • 完备的数据分析方法; • 一键式数据导出;• 全中文界面,针对中国用户使用习惯而设计; • 无限制的安装拷贝次数;• 软件版本终身免费升级。 人性化导航实验设置 数据结果自动分析 快捷数据导出全面的功能:• 定性检测 • 绝对定量 • 相对定量 • 熔解曲线• 基因分型 • 蛋白热稳定性 • 梯度PCR 绝对定量-标准曲线 熔解曲线分析 定性分析 相对定量-表达差异柱状图创新点:光学检测方面,Archimed采用菲涅尔透镜结合大尺寸PMT这一专利的新型信号检测系统,PMT高检测灵敏度结合菲涅尔透镜体薄、焦距短的特点,辅以特殊的光路设计,缩短检测光路,让检测器最大程度接近样品。扫描方式上,Archimed创新地采用时间分辨逐孔扫描检测技术,隔行排布扫描头的设计,高精度扫描头按时间顺序(时间分辨)让每个荧光检测通道遍历每个样品孔,从空间角度最大程度规避孔间串扰。温控方面,Archimed采用最新型Peltier元件,保证质量和性能最佳。镂空式反应模块设计减少导热金属质量,提升升降温速率;镂空式孔槽有助于空气流通;利用导热碳膜及辅助加热板,实现边缘孔的温度补偿,提高整板温度均一性。Archimed X6时间分辨荧光定量PCR
  • 【动态】剑桥大学举办新型时间分辨阴极荧光测量系统Allalin Chronos安装交付仪式
    2019年9月,剑桥大学Rachel Oliver教授及其团队聚集了来自英国科学和工业界的50多名研究人员,为其全新的时间分辨阴荧光测量系统Allalin Chronos的顺利安装和交付使用举行了盛大的开幕式!剑桥大学物理科学学院院长Lindsay Greer教授主持开幕仪式,并对这台设备获得的时间分辨阴荧光结果和应用进行了许多深入而热烈的讨论,内容涵盖了从化合物半导体材料和器件到钙钛矿和地质样品的各种材料。Rachel Oliver教授随后介绍了此设备的实用性,强调了此设备的顺利安装必将大促进英国科学界在相关领域的研究,期待可以得到更多的创新性科研成果! 开幕式现场照片 这款先进的时间分辨阴荧光测量系统是由瑞士attolight自主研发生产的,Attolight公司CEO Samuel Sonderegger博士应邀参加开幕式,并与到场科学家进行了深入的技术交流和沟通。作为同时具备时间分辨和空间分辨的阴荧光测量系统,attolight生产的Allalin Chronos具有如下的特技术优势和应用特点:→ Allalin Chronos系统,可实现变温、时间分辨、纳米尺度分辨率的阴荧光分析。在连续模式下,系统采用高电流密度的肖特基场发射电子枪。在时间分辨模式下,相同的电子枪则为超快激光器所驱动,产生超短电子脉冲。系统有的高效率定量CL收集系统,有效保障时间分辨阴荧光光谱测试。→ 激发激光器与探测器之间同步,从而使皮秒的时间分辨阴荧光分析成为可能。脉冲模式与连续模式之间的切换是自动化的,且仅需要几分钟,这使得系统能够成为的多用户设备,满足不同用户的研究需求和使用要求。→ Allalin Chronos是专为那些需要获取光谱动力学信息的研究者们而量身打造的,具有纳米空间分辨率及皮秒的时间分辨率。系统具有一整套超快探测器,探测波长覆盖紫外至近红外波段(200 nm~1700 nm),尽可能优化您的应用。→ 该系统还可搭配超稳液氦恒温器使用,工作温度覆盖10 K至室温。Allalin Chronos的多功能设计也使它能够执行其他先进的表征测试,例如泵浦/探测光谱及动态SEM。 附1:基于时间分辨阴荧光光谱的应用及部分实例- 局域辐射和非辐射载流子寿命的测定- 半导体异质结中载流子激发动力学的分析- 先进的泵浦/探测光谱 利用时间分辨CL分析弯曲状态下氧化锌微米带中的激子扩散行为:沿微米带径向三个不同激发区域的时间分辨荧光光谱。根据测试结果,可以建立并验证应力诱导的激子扩散模型。(ACS Nano, 8(4), 3412-3420, 2014) InGaN/GaN量子阱中局域载流子复合。(Applied Physics Letters 109, 232103 (2016)) 在氮化镓中围绕单一位错缺陷的CL强度与有效寿命。(Applied Physics Letters 109, 042101 (2016)) 单根InGaN/GaN核/壳微米柱的时间分辨CL衰减及CL成像结果。(Applied Physics Letters 112, 052106 (2018)) 附2:Rachel Oliver教授利用Attolight阴荧光光谱仪开展的部分研究工作:[1] T. J. Puchtler, A. Woolf, T. Zhu, D. Gachet, E. L. Hu, R. A. Oliver. Effect of Threading Dislocations on the Quality Factor of InGaN/GaN Microdisk Cavities. ACS Photonics, 2015, 2, 137-143.[2] T. Zhu, D. Gachet, F. Tang, W. Y. Fu, F. Oehler, M. J. Kappers, P. Dawson, C. J. Humphreys, R. A. Oliver. Local carrier recombination and associated dynamics in m-plane InGaN/GaN quantum wells probed by picosecond cathodoluminescence. Appl. Phys. Lett., 2016, 109, 232103. [3] C. J. Humphreys, F. C-P. Massabuau, S. L. Rhode, M. K. Horton, T. J. O’Hanlon, A. Kovacs, M. S. Zielinski, M. J. Kappers, R. E. Dunin-Borkowski, R. A. Oliver. Atomic Resolution Imaging of Dislocations in AlGaN and the Efficiency of UV LEDs. Microsc. Microanal., 2018 ,4, 4-5.[4] F. C-P. Massabuau, S. L. Rhode, M. K. Horton, T. J. O’ Hanlon, A. Kovács, M. S. Zielinski, M. J. Kappers, R. E. Dunin-Borkowski, C. J. Humphreys, R. A. Oliver. Dislocations in AlGaN: Core Structure, Atom Segregation, and Optical Properties. Nano Lett., 2017, 17, 4846-4852.[5] F. C-P. Massabuau, P. Chen, S. L. Rhode, M. K. Horton, T. J. O’Hanlon, A. Kov′acs, M. S. Zielinski, M. J. Kappers, R. E. Dunin-Borkowski, C. J. Humphreys, R.A. Oliver. Alloy fluctuations at dislocations in III-Nitrides: identification and impact on optical properties. Proceedings Volume 10532, Gallium Nitride Materials and Devices XIII 105320R (2018)附3:部分国内专家学者利用Attolight阴荧光光谱仪开展的研究工作:[1] X. Fu, G. Jacopin, M. Shahmohammadi, R. Liu, M. Benameur, J-D. Ganière, J. Feng, W. Guo, Z. Liao, B. Deveaud, D. Yu. Exciton Drift in Semiconductors under Uniform Strain Gradients: Application to Bent ZnO Microwires. ACS Nano, 2014, 8, 3412-3420.[2] M. Shahmohammadi, G. Jacopin, X. Fu, J-D, Ganière, D. Yu, B. Deveaud. Exciton hopping probed by picosecond time-resolved cathodoluminescence. Appl. Phys. Lett., 2015, 107, 141101.[3] Y. Song, L. Zhang, Y. Zeng, L. Qin, Y. Zhou, Y. Ning, L. Wang. Microscopic View of Defect Evolution in Thermal Treated AlGaInAs Quantum Well Revealed by Spatially Resolved Cathodoluminescence. Materials 2018, 11(6), 1049.[4] X. Xie, B. Li, Z. Zhang, S. Wang, D. Shen. Controlled compensation via nonequilibrium electrons in ZnO. Sci. Rep., 2018, 8, 17020.
  • 罗氏诊断主动召回电化学发光全自动免疫分析仪
    pstrong仪器信息网讯 /strong2017年12月15日,罗氏诊断产品(上海)有限公司对电化学发光全自动免疫分析仪(注册证号:国食药监械(进)字2014第3404503号、国食药监械(进)字2006第3400500号)主动召回。 br//pp  据悉,罗氏诊断在评估调查产品投诉时发现,电化学发光全自动免疫分析仪(cobas e 411和Eleysys 2010)在极少数情况下,样本& 控制数据文件中可能发生软件(SW)故障,有可能导致数据不匹配。截止至目前,罗氏诊断全球共收到4例客户投诉,未发生不良事件。/pp  经调查,引起上述召回事件的根本原因是软件故障,并且只有在同时满足以下条件时(极少的情况下)才会发生:/pp  strongcobas e 411:/strong 1、没有按照操作手册指示每天运行“样本数据清除“功能;2、样本& 控制数据文件中的存储记录 2000条时。/pp  strongElecsys 2010: /strong1、没有按照操作手册指示每天运行“样本数据清除“功能;2、样本& 控制数据文件中的存储记录超过600条时。/pp  该软件故障已经确认。对于电化学发光全自动免疫分析仪(cobas e 411)将会在新版本的软件中修复这个故障;对于电化学发光全自动免疫分析仪(Elecsys 2010),由于产品已于2014年底退市,将不再发布新版本软件。/pp  针对上述情况,罗氏诊断采取以下纠正措施:/pp  1.向所有使用受影响产品电化学发光全自动免疫分析仪(cobas e 411和Elecsys 2010)的客户发告知信,告知其相关信息及需要采取的措施。/pp  2.对使用受影响产品电化学发光全自动免疫分析仪(cobas e 411)的客户,在收到制造商发布的更新软件后,将为其安装升级软件。/pp  (无需停用相关检测仪器,受影响产品无需从客户处撤回)/pp  这次召回级别为二级。涉及产品的型号、规格及批次等详细信息见《医疗器械召回事件报告表》。/pp  附件:医疗器械召回事件报告表/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/insimg/328260be-7c8f-43e9-a23e-2cb25625dfcf.jpg" style="width: 600px height: 845px " title="1.jpg" width="600" vspace="0" hspace="0" height="845" border="0"//pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/insimg/e8199f78-9ee0-4f4f-bdcd-f2419e3fcb1e.jpg" style="width: 600px height: 845px " title="2.jpg" width="600" vspace="0" hspace="0" height="845" border="0"//pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/insimg/ed750b28-5b65-486d-b198-d421335e14f2.jpg" style="" title="3.jpg"//ppbr//p
  • 肿瘤现形记:高分辨荧光显微成像仪发力
    p  癌症被谓为众病之王,如何预防恶性肿瘤的转移和扩散,一直是临床医学界难题。/pp  有没有一种技术手段,能够对生物活体进行观察和追踪,让医生从整体上了解疾病发展的进程,及时调整药物和基因治疗方案,从而改变或阻止疾病发展?/pp  答案是肯定的。/pp  由宁波永新光学股份有限公司牵头,联合浙江大学、上海理工大学、复旦大学附属中山医院、南京医科大学等共同进行研究和开发的“高分辨荧光显微成像仪”正在为解决这一难题而不懈努力,也正因此,该项目获得了科技部重大科学仪器设备开发重点专项立项。/pp  “‘高分辨荧光显微成像仪’是以永新公司现有的一代高端倒置荧光显微成像系统主体为基础,开发出一个具有光切片成像、荧光标记与共定位、三维空间还原及动态成像、单分子荧光探测、荧光漂白后恢复等的复杂多功能高端荧光显微成像系统。”公司技术总监、项目负责人毛磊对科技日报记者说。/pp  虽然电子显微镜、原子力显微镜等技术已经实现获得更高的分辨率,但由于不能对活体实时成像,样品制备复杂等原因,光学显微镜仍然是当前生物医学、生命科学以及医学研究等方面的主要观测设备。/pp  “相比较传统的显微成像技术,这种高分辨荧光成像技术不仅可以实现对活体组织微观结构、各种肿瘤细胞的显微成像,还为细胞组学、基因组学、蛋白组学、肿瘤学等研究提供了强大的技术支撑,是一项在生命科学领域有着不可替代优势的技术。”毛磊说。/pp  此外,这种技术还可以在活体动物体内进行显微成像,通过对同一组实验对象在不同时间点进行记录,跟踪同一观察目标(标记细胞及基因)的移动及变化,让研究人员直接快速地检测各种癌症模型中肿瘤的生长、转移以及对药物的反应,比传统方法更适合于肿瘤体内生长的定量分析。/pp  值得一提的是,为了提高光学显微的成像效果,以便从复杂的细胞组织中提取出自己想要的细节,研发团队还采用了荧光标记的方法,在细胞中加入特殊的荧光标记物,这些标记物在特定的光照下,有的发红光,有的发绿光,而且每种荧光标记物都具有一定的选择性,只与细胞中既有的特定分子结合,然后发出荧光。/pp  “荧光成像大大提高了光学显微成像的对比度,还帮助研发人员分辨细胞中的不同结构。预期项目结题后,3—5年内将可实现累计销售1亿多元,10年内可实现年销售3—5亿元,利税超亿元。该项成果将推动我国高端显微镜的‘跨代式’发展。”毛磊说。/pp  相关统计显示,2016年全球该类产品市场共有30多亿美元,中国市场大约在16亿元人民币(约占世界市场8%),年增长率超过30% 而在世界高端显微镜市场,我国显微镜制造企业占比小于1%,具有很大的市场空间。/pp  “永新已经与三家应用单位共同在遗传/发育生物学、细胞生物学等荧光免疫方面进行了应用开发,其中NIB900、NE900系列研究级显微镜已实现批量生产,并在国内外高校及科研院所销售超过200台。下一阶段,我们将围绕切片成像模块、单分子探测模块及全内反射模块以及核心部件如高倍率、大数值孔径平场复消色差物镜,荧光滤光片,微分干涉组件等进行深度研发,最终实现预期目标。”毛磊表示。/p
  • 肿瘤现形记:高分辨荧光显微成像仪发力
    p  癌症被谓为众病之王,如何预防恶性肿瘤的转移和扩散,一直是临床医学界难题。/pp  有没有一种技术手段,能够对生物活体进行观察和追踪,让医生从整体上了解疾病发展的进程,及时调整药物和基因治疗方案,从而改变或阻止疾病发展?/pp  答案是肯定的。/pp  由宁波永新光学股份有限公司牵头,联合浙江大学、上海理工大学、复旦大学附属中山医院、南京医科大学等共同进行研究和开发的“高分辨荧光显微成像仪”正在为解决这一难题而不懈努力,也正因此,该项目获得了科技部重大科学仪器设备开发重点专项立项。/pp  “‘高分辨荧光显微成像仪’是以永新公司现有的一代高端倒置荧光显微成像系统主体为基础,开发出一个具有光切片成像、荧光标记与共定位、三维空间还原及动态成像、单分子荧光探测、荧光漂白后恢复等的复杂多功能高端荧光显微成像系统。”公司技术总监、项目负责人毛磊对记者说。/pp  虽然电子显微镜、原子力显微镜等技术已经实现获得更高的分辨率,但由于不能对活体实时成像,样品制备复杂等原因,光学显微镜仍然是当前生物医学、生命科学以及医学研究等方面的主要观测设备。/pp  “相比较传统的显微成像技术,这种高分辨荧光成像技术不仅可以实现对活体组织微观结构、各种肿瘤细胞的显微成像,还为细胞组学、基因组学、蛋白组学、肿瘤学等研究提供了强大的技术支撑,是一项在生命科学领域有着不可替代优势的技术。”毛磊说。/pp  此外,这种技术还可以在活体动物体内进行显微成像,通过对同一组实验对象在不同时间点进行记录,跟踪同一观察目标(标记细胞及基因)的移动及变化,让研究人员直接快速地检测各种癌症模型中肿瘤的生长、转移以及对药物的反应,比传统方法更适合于肿瘤体内生长的定量分析。/pp  值得一提的是,为了提高光学显微的成像效果,以便从复杂的细胞组织中提取出自己想要的细节,研发团队还采用了荧光标记的方法,在细胞中加入特殊的荧光标记物,这些标记物在特定的光照下,有的发红光,有的发绿光,而且每种荧光标记物都具有一定的选择性,只与细胞中既有的特定分子结合,然后发出荧光。/pp  “荧光成像大大提高了光学显微成像的对比度,还帮助研发人员分辨细胞中的不同结构。预期项目结题后,3—5年内将可实现累计销售1亿多元,10年内可实现年销售3—5亿元,利税超亿元。该项成果将推动我国高端显微镜的‘跨代式’发展。”毛磊说。/pp  相关统计显示,2016年全球该类产品市场共有30多亿美元,中国市场大约在16亿元人民币(约占世界市场8%),年增长率超过30% 而在世界高端显微镜市场,我国显微镜制造企业占比小于1%,具有很大的市场空间。/pp  “永新已经与三家应用单位共同在遗传/发育生物学、细胞生物学等荧光免疫方面进行了应用开发,其中NIB900、NE900系列研究级显微镜已实现批量生产,并在国内外高校及科研院所销售超过200台。下一阶段,我们将围绕切片成像模块、单分子探测模块及全内反射模块以及核心部件如高倍率、大数值孔径平场复消色差物镜,荧光滤光片,微分干涉组件等进行深度研发,最终实现预期目标。”毛磊表示。/p
  • 170万!某单位特勤健康管理科检验设备一批(全自动生化分析仪+全自动免疫分析系统)采购项目
    项目编号:2022-JY05-W1060项目名称:特勤健康管理科检验设备一批(全自动生化分析仪+全自动免疫分析系统)预算金额:170.0000000 万元(人民币)最高限价(如有):170.0000000 万元(人民币)采购需求:序号货物及所需检测项目技术要求计量单位数量采购预算(万元)交货时间交货地点备注(一)全自动生化分析仪技术标准及性能要求详见第二部分套1140.00自合同签订后90日内完成供货 北京,招标人指定地点用于临床血清、血浆、尿液等样品的生化指标的测定;(二)全自动免疫分析系统套130.00对肿瘤标记物、传染病、甲状腺功能、骨标志物、心肌等项目进行检测。★1癌胚抗原定量本次招标能够开展的检测项目元/人次//招标人指定时间投标人须对本次招标的设备必须能够开展的检测项目(“★”号项目)进行单独报价,投标人应知晓并理解以下内容:招标人若购买设备配套专用的试剂耗材,在合同履行期间,将按照具体采购量进行据实结算。★2甲胎蛋白元/人次//★3糖类抗原125元/人次//★4糖类抗原153元/人次//★5糖类抗原199元/人次//★6神经元特异性烯醇化酶元/人次//★7总前列腺特异性抗原(PSA)元/人次//★8游离前列腺特异性抗原元/人次//#9乙型肝炎病毒表面抗原元/人次//#10乙型肝炎病毒表面抗体元/人次//#11乙型肝炎病毒e抗原元/人次//#12乙型肝炎病毒e抗体元/人次//#13乙型肝炎病毒核心抗体元/人次//#14梅毒螺旋体抗体元/人次//#15丙型肝炎病毒抗体元/人次//#16人类免疫缺陷病毒抗体+P24抗原元/人次//#17甲状旁腺素元/人次//#18C肽元/人次//#19胰岛素元/人次//#20促甲状腺素受体抗体元/人次//★21骨钙素元/人次//★22β-胶原特殊序列元/人次//★23总I型胶原氨基端延长肽元/人次//★24维生素D元/人次//#25非小细胞肺癌相关抗原21-1定量元/人次//★26甲功五项元/人次//说明1.投标供应商须对所投包内所有产品和数量进行唯一报价,否则视为无效投标;2.投标报价应包括所有货物供应、运输、安装调试、技术培训、售后服务、备品备件和伴随服务等价格;3.投标供应商必须保证所投产品为全新、未使用过的产品。合同履行期限:自合同签订后90日内完成供货本项目( 不接受 )联合体投标。
  • 福建物构所稀土纳米探针荧光免疫分析研究获进展
    镧系解离增强荧光免疫分析技术(DELFIA)作为目前最灵敏的荧光生物检测方法,在科学研究和医疗领域已获得广泛的商业应用。商用的DELFIA试剂盒采用传统的分子探针如稀土螯合物作为标记物,存在着稀土离子标记比率低(最高10~30个稀土离子)、光化学稳定性差和价格昂贵等缺点。与稀土螯合物相比,稀土纳米发光材料具有化学稳定性高、可修饰性好、潜在生物毒性低等优点,是目前普遍看好的新一代荧光生物标记材料。然而,由于稀土离子4fN电子组态间的禁戒跃迁特性,直接利用稀土离子自身的敏化发光无法达到高灵敏检测的需求。因此,科学家设想能否结合DELFIA技术,将稀土纳米晶作为纳米探针替代分子探针稀土螯合物,利用纳米晶高度浓缩的稀土离子(每个纳米晶含成千上万个稀土离子)来提高其标记比率,并借助DELFIA增强液将纳米晶溶解生成大量强发光的稀土胶束,从而达到提高发光与检测灵敏度的目的。  在国家自然科学基金杰出青年科学基金、科技部&ldquo 973&rdquo 计划和重大科学仪器开发项目、中科院战略性先导科技专项和创新国际团队项目等支持下,中国科学院福建物质结构研究所中科院光电材料化学与物理重点实验室陈学元研究小组和结构化学国家重点实验室黄明东研究小组合作,发展了一种基于稀土纳米晶溶解增强的荧光免疫分析技术(DELBA)。该技术沿用了商用DELFIA的操作流程,简单地以稀土纳米探针替代分子探针稀土螯合物,利用稀土纳米晶高度浓缩的稀土离子提高其标记比率,极大地增强了体系的发光与检测灵敏度。项目组通过高分辨荧光光谱、元素分析等手段,以~9 nm NaEuF4为纳米荧光探针和&beta -萘甲酰三氟丙酮(&beta -NTA)为增强剂,揭示了稀土纳米晶溶解增强的发光机理,并实现了对人体广谱肿瘤标志物癌胚抗原(CEA)的高灵敏DELBA检测,检测极限达0.1 pg/mL,比商用DELFIA试剂盒降低了近3个数量级,为迄今CEA检测最优值。进一步地,该团队利用发展的DELBA技术测试了肿瘤医院20例血清CEA值,结果与商用DELFIA试剂盒基本一致,并通过测定变异系数、回收率等验证了该方法的准确度和可靠性。上述工作以通讯形式于8月11日在线发表在《德国应用化学》杂志上(Angew. Chem. Int. Ed. 2014, 53, DOI: 10.1002/anie.201405937),并申请了中国和PCT国际发明专利。  此前,该团队在基于稀土纳米荧光探针的肿瘤标志物检测方面已取得系列研究进展。例如,利用LiLuF4:Yb3+,Er3+上转换纳米荧光探针实现了对疾病标志物人绒毛膜促性腺激素&beta 亚单位(&beta -hCG)的上转换荧光(UCL)检测(Angew. Chem. Int. Ed. 2014, 53, 1252 Frontispiece) 利用超小CaF2: Ce3+/Tb3+纳米荧光探针实现对人体肿瘤标志物可溶性尿激酶受体(suPAR)的时间分辨荧光共振能量传递(TR-FRET)检测(Angew. Chem. Int. Ed. 2013, 52, 6671)。  基于稀土纳米探针的溶解增强荧光免疫分析原理示意图:a-传统DELFIA b-新技术DELBA
  • 索尼发布全自动光谱细胞分析仪SA3800
    2015年6月17日,索尼公司(下称&ldquo 索尼&rdquo )今日发布SA3800全自动光谱细胞分析仪,一款配备了全新研发的3D驱动(X, Y, Z 轴)自动取样器的新型流式细胞分析仪。SA3800实现了完全自动化的便捷操作,其自动取样器将能实现高速的分析及处理功能。 ▲SA3800光谱细胞分析仪和全新研发的3D驱动自动取样器  流式细胞分析仪使用激光照射荧光试剂染色的细胞,并通过测量荧光和散射光分析细胞类型及特性。流式细胞分析仪广泛应用于免疫学、肿瘤学、再生医学以及药物开发等细胞学研究领域。尤其在药物开发和生物指标1开发等需要分析各类细胞的领域,非常需要快速、高效、精准地分析大量样本。  在传统的自动取样器中,孔板采取水平式移动,而试样探针2则是垂直移动来收集样本,这就导致样本需要来回移动较长的距离才能被采集到,这将有可能影响处理速度和样本残留率(样本间交叉感染的几率)。SA3800中的新款自动取样器使用了固定试样探针和可3轴(X,Y, Z 轴)移动的孔板,可以加速样本取样及分析过程。同时,该取样探针还自带自我清洁功能,可以进一步将样本残留率降低至0.1%或以下。这些独特性能将保证SA3800实现高速且稳定的样本收集,这在大量样本的分析工作中将是一个极受欢迎的产品特性。  此光学单元使用了索尼原有的探测荧光反应的光谱分析系统,该系统已用于此前发布的索尼SP6800Z系列3细胞分析仪,并在市场上取得了不错的成绩。该系统采用了高感应度的32通道光电倍增管(PMT),可检测并分辨出原先无法测量的细胞自体荧光因素4。它还能大大缩短荧光试剂修正的费时过程,确保结果的可靠性且减少人为因素。  今年6月26日,索尼将在英国格拉斯哥举办的第30届细胞学推进国际学会大会上中进行SA3800的展示。  1.一种物质,例如在血液中检测到的某种特殊蛋白质等,通过它的聚集显示出某种疾病的存在和发展  2.可萃取细胞样本的管子  3.请访问索尼网址获取SP6800Z系列产品相关信息  4.可由细胞自身反射的微弱荧光性SA3800的主要功能  1.新开发的3D 自动取样器SA3800的自动取样器使用3D驱动,快速和有效收集细胞样本。当和96孔孔板或384孔孔板结合使用时,可在保持较低样本残留的情况下,实现对大量样本的快速自动化分析。  3D自动取样器的主要性能 -  ●高速自动取样,在25分钟内完成96孔孔板的取样  ●低样本残留比例:0.1%以下  ●试样探针具备内置的自动清洗功能  ●可配合96孔孔板、384孔孔板及5毫升试管管架  ●通过摇晃对样本激活的功能;对样本进行冷却的功能  2.使用索尼自行开发的光谱分析技术实现高准确度的、可靠的分析  ①在不进行滤光的情况下,荧光波长将被索尼独家设计的棱镜所分解。在使用32通道的光电倍增管之后,可对荧光波形进行高度准确的分析。  ②索尼自行开发的分析算法。使用索尼开发的分析算法,根据波形将多种荧光物信号分解为不同的颜色信息。这些数据随后将依据密度等特征进行分析。这一分析算法可以分辨出具有非常相近波形的荧光物,以及位置非常接近的光波波峰,这在常规滤光技术下是很难实现的。▲传统细胞分析器的分析结果▲特殊细胞分析器的分析结果  ③自发荧光检测。因为个体样本拥有不同的自发荧光水平以及其它因素,对大量样本进行测量会因为不一致的荧光背景变得很复杂,这使通过数量去比较样本难以实现。索尼开发的光谱分析技术,通过将自发荧光识别为一种颜色,从而与其它信号区分开来,这就解决了上述问题并令分析更为可靠。  3.灵活的光学系统可以根据需求兼容四种激光。  除了常规的488nm以外,还有405nm、561nm、638nm。今后对SA3800加入更多激光也是有可能的。
  • 日本电子收购超快时间分辨电镜商IDES:补强时间分辨TEM技术
    p style="text-indent: 2em "strongspan style="text-indent: 2em "仪器信息网讯/span/strongspan style="text-indent: 2em " 2020年1月17日,日本电子(JEOL Ltd.)消息,日本电子完成收购INTEGRATED DYNAMIC ELECTRON SOLUTIONS,INC.(总部位于美国加利福尼亚,以下称IDES)的所有股份,IDES是一家专门从事与透射电子显微镜(TEM)相关技术的创业型企业。收购后,IDES将成为日本电子全资子公司。/span/pp style="text-indent: 2em "strong背景与目的/strong/pp style="text-indent: 2em "正如日本电子正在实施的新的中期业务计划“三角计划2022”中概述——strongspan style="color: rgb(0, 32, 96) "公司将通过实施加速业务扩张的举措来推动持续和可持续的增长/span/strong。日本电子的旗舰产品TEM系统旨在观察原子分辨率的材料并检查其静态结构。strongspan style="color: rgb(0, 32, 96) "IDES的独特技术将把这些TEM系统升级为“超快时间分辨的TEMs”,能够在纳秒(十亿分之一秒(10-9))到飞秒(一千万亿分之一秒(10-15秒)之间捕捉静止和动态图像,并用纳米级的空间分辨率进行记录。/span/strong/pp style="text-indent: 2em "span style="color: rgb(0, 32, 96) "strong这些创新的系统可用于探索常规TEM无法触及的动力学和量子现象。将来,该系统还可以升级以支持在生命科学领域中的应用,如蛋白质运动研究。/strong/span/pp style="text-indent: 2em "IDES还提供与高速静电偏转和压缩感测有关的独特技术。span style="color: rgb(0, 32, 96) "strong这些技术可以作为附件集成到TEM中,以微秒级的分辨率提供最小的损坏、高通量的TEM图像采集。/strong/span/pp style="text-indent: 2em "此外,span style="color: rgb(0, 32, 96) "strongIDES的当前技术及其正在开发的未来技术将使升级冷冻电子断层扫描_、扫描和扫描透射成像技术成为可能。/strong/span/pp style="text-indent: 2em "span style="color: rgb(255, 255, 255) background-color: rgb(112, 48, 160) "strong关于IDES/strong/span/pp style="text-align: left text-indent: 2em "img style="max-width: 100% max-height: 100% width: 200px height: 57px " src="https://img1.17img.cn/17img/images/202001/uepic/2de2900a-ac7f-40e8-9020-a5963f29bf1e.jpg" title="ides.png" alt="ides.png" width="200" height="57" border="0" vspace="0"//ppbr//pp style="text-indent: 2em "strong名称:/strongINTEGRATED DYNAMIC ELECTRON SOLUTIONS, INC.(集成动态电子解决方案公司)/pp style="text-indent: 2em "strong地址:/strong美国加利福尼亚州普莱森顿市117单元5653号/pp style="text-indent: 2em "strong成立时间:/strong2009年/pp style="text-indent: 2em "span style="color: rgb(255, 255, 255) background-color: rgb(112, 48, 160) "strong关于日本电子/strong/span/pp style="text-align: left text-indent: 0em "img style="max-width: 100% max-height: 100% width: 200px height: 92px " src="https://img1.17img.cn/17img/images/202001/uepic/1b59b8a7-58ee-4a52-8926-50da7ac0baa7.jpg" title="img_logo_en.png" alt="img_logo_en.png" width="200" height="92" border="0" vspace="0"//pp style="text-indent: 2em "日本电子株式会社(JEOL Ltd., 董事长:栗原 权右卫门)成立于1949年,公司的业务包括三个部分:科学/计量仪器、工业设备以及医疗器械。主要产品如下:/pp style="text-indent: 2em "strong科学/计量仪器/strong/pp style="text-indent: 2em "电子光学设备(透射电子显微镜、 扫描电子显微镜、电子探针、 俄歇电镜、光电子谱仪和电子显微镜周边设备等)/pp style="text-indent: 2em "分析仪器(核磁共振谱仪、 电子自旋共振谱仪、质谱仪、(飞行时间质谱仪, 气相色谱-质谱联用仪, 液相色谱-质谱联用仪) 、 便携式气相色谱仪、气体监测仪等)/pp style="text-indent: 2em "计量检查仪器(扫描电子显微镜、 分析型扫描电子显微镜、电子显微镜周边设备、 复合电子束加工观察设备、 聚焦离子束加工观察设备、截面抛光仪、离子切片仪、半导体缺陷分析仪 、X射线荧光元素分析仪、手持式X射线荧光元素分析仪等)/pp style="text-indent: 2em "strong工业设备/strong/pp style="text-indent: 2em "半导体设备(电子束光刻系统(可变矩形束电子束光刻)、电子束光刻系统(圆形电子束光刻)等)/pp style="text-indent: 2em "工业设备(电子束蒸镀用的电子枪及电源、大功率电子枪及电源、 内置等离子体枪及电源、产生等离子体的高频电源、高频感应热等离子体装置等)/pp style="text-indent: 2em "strong医疗设备/strong/pp style="text-indent: 2em "医疗设备(自动分析仪、 样品传输系统、临床检查信息处理系统、 全自动氨基酸分析仪等)/ppbr//p
  • 某厂商516台全自动化学发光免疫分析仪需召回
    p  近日,由深圳迈瑞生物医疗电子股份有限公司生产的516台全自动化学发光免疫分析仪〔注册号:国械注准20173400696(CL-2000i)、注册号:国械注准20153401280(CL-1000i)〕主动召回。/pp  召回原因:由于部分产品的反应杯压头在使用过程中存在潜在脱落的风险。/pp  深圳迈瑞生物医疗电子股份有限公司报告,由于部分产品的反应杯压头在使用过程中存在潜在脱落的风险,深圳迈瑞生物医疗电子股份有限公司对其生产的全自动化学发光免疫分析仪〔注册号:国械注准20173400696(CL-2000i)、注册号:国械注准20153401280(CL-1000i)〕主动召回。召回级别为三级。涉及产品的型号、规格及批次等详细信息见《医疗器械召回事件报告表》。/pp style="text-align: left "  附件:医疗器械召回事件报告表/pp style="text-align: right "  2018年4月8日/pp style="text-align: center"/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/0bc56055-1ccb-412f-8efc-da82dd66b6ac.jpg" title="2018-04-10_135851.jpg"//pp style="text-align: center "br//p
  • 高分辨氢氘交换质谱技术解析天然免疫受体构象变化与信号传导机制
    高分辨氢氘交换质谱技术解析天然免疫受体构象变化与信号传导机制 MDA5是细胞内的异体RNA监测蛋白,属于RIG-I样受体家族(RLRs)的重要成员。MDA5参与多种RNA病毒引起的免疫反应,是天然免疫的一道重要屏障。RLRs家族共有RIG-I、MDA5及LGP2三个成员,其中RIG-I和MDA5的N端均拥有串联CARDs结构域,可通过CARD-CARD同型相互作用招募MAVS,最终促进I型干扰素(IFN)通路的激活。在RLRs抗病毒信号的激活过程中,K63连接的多聚泛素链(K63-polyUb)起着关键作用[1]。前期研究发现,短链K63-polyUb可以通过共价锚定和非共价锚定两种方式有效地促使RIG-ICARDs的寡聚[2, 3]。形成的异源四聚体复合物(K63-polyUb-RIG-ICARDs)可激活MAVSCARD寡聚,形成MAVS纤维的核心[2, 3]。然而,K63-polyUb是如何调控MDA5 CARDs组装以及招募、激活MAVS CARD的分子机制,仍是待解决的科学问题。 Immunity近期中国科学院上海药物研究所郑杰团队在Immunity杂志上以Research Article形式在线发表了题为“Ordered assembly of the cytosolic RNA-sensing MDA5-MAVS signaling complex via binding to unanchored K63-linked poly-ubiquitin chains”的研究成果,本研究通过生物大分子氢氘交换质谱技术(HDX-MS)以及冷冻电镜技术(Cryo-EM)揭示了长链,非锚定K63-polyUb促进MDA5-MAVS组装程序与信号传递的分子机制。MDA5-MAVS首先研究人员建立了K63-,K48-连接泛素链的生化合成平台,并制备了不同长度的K63-polyUbn(2≤n≤14)(图1)。通过基于Orbitrap Fusion平台的氢氘交换质谱技术(Hydrogen/Deuterium Exchange Mass Spectrometry,HDX-MS),研究人员发现MDA5CARDs和RIG-ICARDs的氢氘交换保护程度依赖于不同长度的K63-polyUbn(MDA5: n≥8 RIG-I: n≥3)而不依赖于K48-polyUbn(n≥10);并且保护强度随着K63-polyUb的长度增加而特异性加强。 图1:HDX-MS分析K63-polyUb(2≤n≤14)对RLR CARDs寡聚的影响(点击查看大图) 为了研究K63-polyUbn介导的MDA5CARDs寡聚体的组装机制,研究人员利用冷冻电镜首次解析得到了分辨率为3.3Å的MDA5CARDs与K63-polyUb13复合体的结构。这也是MDA5CARDs第一个近原子分辨率的冷冻电镜结构。 那么MDA5CARDs-K63-polyUbn异源四聚体又是如何招募其下游信号蛋白MAVS?研究人员进一步通过Cryo-EM解析得到了分辨率为3.2Å的由长链K63-polyUb11拴系的“自下而上”的左手螺旋MDA5CARDs-MAVSCARD复合体结构。 同时研究人员通过生物大分子氢氘交换质谱技术,首次证明了人类MDA5全长蛋白的CARDs在初始状态下处于张开的构象并可与长链K63-polyUb10结合。然而在早期研究中,氢氘交换质谱已经证明了RIG-ICARDs在初始状态下呈闭合的构象[4, 5]。这也直接证明了RIG-I和MDA5的CARDs在溶液状态下构象上的巨大差异。其次,研究人员进一步发现K63-polyUb10拴系的MDA5CARDs复合物在溶液中的稳定性受MDA5的RNA依赖的ATP酶活性别构调节。图2:HDX-MS分析全长MDA5在其识别配体或底物作用下(dsRNA/ATP/K63-polyUb)的动态的构象变化与信号传导机制(点击查看大图)综上所述该研究通过生物大分子氢氘交换质谱和冷冻电镜技术发现长链,非锚定K63-polyUb类似于一个“分子桥梁”,促进了MDA5CARDs四聚体的组装,使之形成一个激动状态的构象来招募下游MAVSCARD,以进一步促进MAVSCARD的寡聚和激活(图2)。激活状态下的MDA5可以结合并水解ATP,远程提升CARDs-K63-polyUb10的稳定性以持续激活MAVS。该研究弥补了MDA5通路激活与信号传导研究的空白,进一步揭示了长链,非锚定K63-polyUb在细胞内作为内源性激动剂的免疫学功能,为理解泛素分子多样性在抗RNA病毒天然免疫信号传导与调控中的作用提供了新的线索。* 上海药物所博士后宋斌和美国NIH Research Associate陈运为论文第一作者,上海药物所郑杰研究员为论文的通讯作者。该工作得到了新加坡南洋理工大学罗大海教授、吴彬教授,美国Scripps研究所Patrick Griffin教授,上海药物所罗成研究员和张乃霞研究员的大力支持,得到了国家自然科学基金、上海市浦江人才计划等项目的支持。 专家访谈郑杰(中国科学院上海药物研究所 研究员)Q根据您的经验对氢氘交换质谱技术的理解?以及这篇文章的主要的难点在哪里?答:我觉得HDX-MS是基于生物化学这个学科,围绕表征酶活反应机理的一个很实用的技术,HDX-MS第一个应用是来自美国工业界,可以很好地应用于药物发现。这个新工作的一个难点就是采用生化合成了不同长度的K63多聚泛素链,并对RLR CARDs进行了后续功能筛选和表征。如果无法系统合成K63-polyubn(n>8),我们也无法解决这个科学问题。Q基于高分辨质谱技术的HDX-MS技术作为捕捉蛋白质溶液构象变化的重要研究工具,相对于冷冻电镜技术提供哪些不可或缺的生物学信息?答:HDX-MS和cryoEM提供的信息非常互补,首先,两者联用可以提供高分辨的结构和溶液中动态构象变化的信息。其次,在我们这个研究中,我们使用了HDX-MS去表征MDA5全长蛋白的一系列的构象变化,这对cryoEM研究是很有难度的,因为全长MDA5 的CARDs和Helicase之间的linker长度达到了120个氨基酸且在溶液中是非常活跃的,我们这次利用了HDX分析了MDA5与RNA,ATP互作如何远程调控CARDs与K63-polyub的构象变化。表征好这一系列的构象变化就是表征MDA5在溶液状态下是如果进行信号传导的机制。QHDX-MS技术目前有哪些应用方向,未来应用前景如何?答:HDX-MS捕捉的是溶液状态下蛋白质稳态的信息,研究蛋白质动力学,这对药物发现(drug discovery)研究非常关键,可以大大加速药物的发现与研发。HDX-MS可以直接提供药物与小分子互作,以及生物大分子抗体药物识别抗原等研究提供接近生理意义的重要信息。我博士后是在美国Scripps研究所Patrick Griffin教授进行的训练,当时实验室的同事很多都去了美国大药企利用HDX-MS参与药物发现。其中Mike还在礼来公司搭建了一套高通量全自动的HDX设备,专门为礼来的小分子药物发现筛选而设定。回国后我们也正朝着这个方向努力,实现HDX-MS软件和硬件的进一步自动化,希望未来在国内可以实现HDX-MS高通量。另一个努力的方向是早日实现单氨基酸残基分辨率的HDX-MS技术的升级,这可以 帮助精准表征药物作用关键氨基酸残基。为了实现这个目标,HDX-MS的自动化进样平台机械臂模块需要一定的改造,比如更严格的控温,更高频率的连续进样来优化质谱的采集效率。最终我希望可以利用高通量HDX-MS平台去建一个蛋白库,提供氢键,自由能,单氨基酸残基HDX等可以量化的参数,更精准的帮助科研工作者了解蛋白质的折叠,去折叠等稳态的信息。 关于作者中国科学院上海药物研究所郑杰实验室长期结合生物大分子氢氘交换质谱技术交叉解决由蛋白质(酶)的动力学异常变化所导致的重大疾病的发生机制,聚焦RNA天然免疫模式识别受体的内源,外源性配体识别与信号传导机制,以及自身免疫疾病发生机制。围绕氢氘交换及其应用,以第一作者或通讯作者在Immunity 2021,Anal Chem 2019,Nat Commun 2018,structure 2018, Nat Commun 2017,Nucleic Acids Res 2015等期刊上。感谢郑杰老师对本文的指导与支持参考文献:1. Hu, H. and S.C. Sun, Ubiquitin signaling in immune responses. Cell Res, 2016. 26(4): p. 457-83.2. Zeng, W., et al., Reconstitution of the RIG-I pathway reveals a signaling role of unanchored polyubiquitin chains in innate immunity. Cell, 2010. 141(2): p. 315-30.3. Peisley, A., et al., Structural basis for ubiquitin-mediated antiviral signal activation by RIG-I. Nature, 2014. 509(7498): p. 110-4.4. Zheng, J., et al., High-resolution HDX-MS reveals distinct mechanisms of RNA recognition and activation by RIG-I and MDA5. Nucleic Acids Res, 2015. 43(2): p. 1216-30.5. Zheng, J., et al., HDX-MS reveals dysregulated checkpoints that compromise discrimination against self RNA during RIG-I mediated autoimmunity. Nat Commun, 2018. 9(1): p. 5366.扫描下方二维码即可获取赛默飞全行业解决方案,或关注“赛默飞色谱与质谱中国”公众号,了解更多资讯+
  • 锘海组织透明化/免疫染色/高分辨率3D成像CRO服务
    组织透明化技术和光片荧光显微技术的发展,使研究者能从宏观到微观对生物组织内部的结构及生理、病理特征进行观察和功能性分析。锘海生物科学仪器(上海)股份有限公司提供完整器官的组织透明化、组织免疫荧光染色、高分辨3D显微成像以及大数据分析一体化服务,旨在通过精准、快速、多样化的CRO服务为每一位生命科学工作者提供个体化/定制化的解决方案。基于SHIELD、SWITCH等技术(Park et al., Nature Biotechnology, 2019)的主动式组织透明化方法和快速3D免疫染色让组织处理的时间极大的缩短,同时又很好的保护了荧光蛋白,实现快速、均一的大组织透明化及免疫染色。只需要与我们的技术人员进行简单沟通和必要的前期准备,即可开始你的3D成像之旅。锘海LS 18宣传视频小鼠肺部成像全脑血管成像组织透明化/免疫染色/高分辨率3D成像一体化解决方案无需切片 / 无需等待 / 无需担忧基于SHIELD方法优化的固定剂,对生物组织荧光、蛋白抗原性和组织结构起到保护作用。SHIELD方法无需水凝胶包埋操作,可重复性高。SmartClear II Pro组织透明化仪器与SHIELD、SWITCH等方法固定的组织兼容。与采取有机溶剂的组织透明化(BABB, iDisco, uDisco, 3DISCO, vDISCO等)相比,具有更好的荧光保护效果,并且加快了处理速度,减少了有毒和挥发性物质的危害。SmartLabel独创性地将随机电泳技术和SWITCH技术结合起来,实现对大组织从里到外均一的免疫标记。与其它被动式的免疫标记方法相比,SmartLabel极大地缩短了抗体染色处理时间,达到前所未有的组织穿透深度。锘海LS18光片荧光显微镜采取平铺光片技术,对透明化大组织进行三维高分辨率成像,适用于各种透明化方法制备的微米级到厘米级的组织,为分子生物学研究、药物筛查和各细分学科领域提供更快速、更精准的分析方法。锘海LS18光片显微镜锘海生物科学仪器(上海)股份有限公司与西湖大学高亮(平铺光片技术发明人)实验室共同研制的新型光片照明显微镜LS 18,克服了传统光片显微镜3D空间分辨率、Z轴层析能力和成像视野之间的矛盾;摒弃原有选择性平面照明显微镜中的单光片照明的方式,运用多个薄的光片分段照明,在不损失成像视野的情况下,获得更高分辨率的3D图像。LS 18光片照明显微镜适用于各种不同类型透明化方法处理的样品(水性透明化方法如Scale、SeeDB、CLARITY、CUBIC、SWITCH、SHIELD等;油性透明化方法如BABB、3DISCO、iDISCO、uDISCO、PEGASOS等),都可得到高分辨率、高信噪比的多色荧光3D图像,能够快速定位宏观样品中的目标细胞,获得高分辨率的3D细胞微结构。关于锘海锘海生物科学仪器(上海)股份有限公司是一家创新型科技公司,总部位于开发区的上海漕河泾开发区松江园区内,在北京,广州,成都,沈阳等十余座城市设有办事处, 作为“生命科学的服务者,医疗创新的推动者“,致力于打造完整的生命科学研发、制造、服务生态体系。我们积极推进科学技术转化,其中,与西湖大学高亮实验室合作共同研制的光片显微镜Nuohai LS18是专为大组织样品设计的高速均匀高分辨率的3D荧光成像系统,Nuohai LS18的 “平铺光片技术”完美地解决了传统光片显微镜中空间分辨率、光学层析能力和成像视野大小之间的矛盾,满足高通量、准确定位的荧光成像分析需求,广泛应用于脑科学、肿瘤学、药物研发、干细胞研究、组织胚胎学等各个领域。我们拥有一支专业和经验丰富的研发、销售、技术和本地化服务的团队,团队中80%以上人员为高学历专业硕博人才,致力于为生命科学领域的科研及企业客户提供个性化、专业化的产品、服务和整体解决方案,让生命科学更加简单、高效。
  • 免疫荧光显微成像详解(上)——免疫荧光原理、步骤
    前言免疫荧光技术是在免疫学、生物化学和显微镜技术的基础上建立起来的一项技术,它是将不影响抗原抗体活性的荧光色素标记在抗体(或抗原)上,与其相应的抗原(或抗体)结合后,在荧光显微镜下呈现一种特异性荧光反应。利用荧光显微镜可以看见荧光所在的细胞或组织,从而确定抗原或抗体的性质和定位,以及利用定量技术(比如流式细胞仪)测定含量。直接法将标记的特异性荧光抗体,直接加在抗原标本上,经一定的温度和时间的染色,用水洗去未参加反应的多余荧光抗体,室温下干燥后封片、镜检。间接法如检查未知抗原,先用已知未标记的特异抗体(第一抗体)与抗原标本进行反应,用水洗去未反应的抗体,再用标记的抗抗体(第二抗体)与抗原标本反应,使之形成抗体—抗原—抗体复合物,再用水洗去未反应的标记抗体,干燥、封片后镜检。如果检查未知抗体,则表明抗原标本是已知的,待检血清为第一抗体,其它步骤的抗原检查相同。标记的抗抗体是抗球蛋白抗体,同于血清球蛋白有种的特异性,如免疫抗鸡血清球蛋白只对鸡的球蛋白发生反应,因此,制备标记抗体适用于任何抗原的诊断。一、实验步骤免疫荧光实验的主要步骤包括 样片制备、固定及通透(或称为透化)、封闭、抗体孵育、封片及荧光检测等。1、 样品准备对于单层生长细胞,在传代培养时,将细胞接种到预先放置有处理过(70%乙醇中浸泡)的盖玻片的培养皿中,待细胞接近长成单层后取出盖玻片即可,操作过程要小心,防止细胞脱片。对于悬浮生长细胞,有两种方式,一种是取对数生长细胞,制备细胞片或直接制备细胞涂片,把细胞片浸入封闭液中固定,封闭后滴加一抗和二抗孵育;另一种是先在悬浮液中进行固定和染色,离心洗脱后,用移液管移至盒式玻片进行后续抗体孵育。对于冰冻切片制备,建议用新鲜组织,否则组织细胞内部结构破坏,易使抗原弥散。组织一定要冷冻适度,切片时选用干净锋利的刀片,防止裂片和脱片。对于石蜡切片的制备,要先进行脱蜡和抗原修复的处理。2、固定做好切片并风干后立即用合适的固定液(固定液包括有机溶剂和交联剂,其选择取决于抗原的性质及所用抗体的特性)进行固定,尤其要较长时间保存的白片,一定要及时固定和适当保存。固定时间则取决于固定组织切片的大小和类型,对大多数组织,18-24h即可,而细胞的固定时间较短。3、通透针对胞内抗原,使用0.5% Triton X-100或丙酮等通透剂进行通透,这一步的目的是使抗体进入胞内。 4、封闭为防止内源性非特异性蛋白抗原的结合,需要在一抗孵育前先用封闭液(一般包括与二抗同一来源的血清、BSA或者羊血清)封闭,减弱背景着色。封闭开始后,要注意样品的保湿,避免样品干燥,否则极易产生较高的背景。5、一抗孵育一抗孵育温度一般分为:4℃、室温、37℃,其中4℃效果更佳;孵育时间与温度、抗体浓度有关,一般37℃孵育1-2h,4℃过夜(从冰箱拿出后37℃复温45min)。具体条件还要根据样品、稀释液等条件进行摸索尝试。6、荧光二抗孵育荧光二抗孵育一般在室温或37℃孵育30min-1h,该过程必须在避光环境下进行,防止荧光淬灭。荧光素标记的二抗随着保存时间的延长,可能会有大量的游离荧光素残留,需要注意配制时采用小包装并进行适当的离心。7、复染一般采用DAPI进行复染,目的是形成细胞轮廓,从而更好地对目标蛋白进行定位。8、封片为了长期保存,我们需要对样本进行封片,用吸水纸吸干爬片上的液体,一般用缓冲甘油等或专门的抗荧光淬灭的封片液。9、 荧光观察有条件的话最好立即用荧光显微镜观察拍照,若不能及时拍照,也要做好封片和封固,保持避光和湿度。荧光显微镜的成像能力对最终的结果也会造成很大的影响,好的荧光显微镜能够最大限度地收集荧光信号,并呈现高分辨率的图片,使细节更清楚,更易得到一张效果极佳的结果图。注意:切片清洗:为了防止一抗、二抗等试剂残留而引起非特异性染色,所以适当地加强清洗(延长时间和增多次数)尤为重要,一般在一抗孵育前的清洗是3min*3次,而一抗孵育后的清洗均为5次*5min。(1)单独冲洗,防止交叉反应造成污染;(2)温柔冲洗,防止切片的脱落。可使用浸洗方式;(3)冲洗的时间要足够,才能彻底洗去结合的物质;(4)PBS的PH和离子强度的使用和要求(建议PH在7.4-7.6,浓度是0.01M;中性及弱碱性条件有利于免疫复合物的形成,而酸性条件则有利于分解;低离子强度有利于免疫复合物的形成,而高离子强度则有利于分解)。根据上述步骤完成免疫荧光实验后,就需要进行荧光显微成像,得到我们想要的结果。选择一款操作简单、成像清晰、效果卓越的荧光显微镜进行观察拍照,才能轻松得到更为理想的结果图,达到事半功倍的效果。Echo Revolve正倒置一体荧光显微镜Echo Revolve正倒置一体荧光显微镜作为一款电动化、智能化的显微镜,具有以下优势:☑ 正倒置一体快速切换:切片、细胞观察随心切换,无惧任何耗材;☑ DHR数字降噪功能:极大地降低了背景噪音和荧光干扰,提高图像锐度,加深细节,得到分辨率更高的图片;☑ 强大的Z-Stacking功能:通过高精度电动化Z轴层扫来扩大景深,解决厚样本观察问题,提高图像分辨率;☑ 500MP单色相机:能够采集更多荧光信号,助力低荧光强度样本观察;☑ 多通道荧光自动拍摄叠加功能:可自动进行多通道成像的叠加,个性化选择查看/保存各通道的组合图像。
  • 苏州星童自主研发免疫分析仪器孵出“双黄蛋”
    记者从苏州生物纳米园获悉,园内企业星童医疗技术(苏州)有限公司日前宣布已经获得了中国食品药品监督管理局(CFDA)颁发的两款免疫分析仪器的产品注册证。这标志着公司自主研发的临床免疫诊断仪器将正式推向市场,以帮助医院提升医疗质量,缩短病人的就医时间,在检测准确率和便捷性上都达到国际最先进水平。 星童医疗技术(苏州)有限公司成立于2012年5月,坐落于苏州生物纳米园。投资者包括著名的风投基金君联资本和经纬创投。其产品包括免疫分析系统和配套使用的试剂。检测项目涵盖心血管疾病、炎症、优生优育、肿瘤等领域。核心技术包括全新的免疫检测方法学、微型生物传感器、仪器设计、纳米材料、试剂、自动化、分析软件等。目前已获得十几项美国、中国等国的发明专利。 此次获得产品注册证的两款仪器分别是Matrix Core和Pylon Core,都是基于星童医疗自行研发的循环增强荧光检测技术(Cyclic Enhanced Fluorescence Analysis)。由于不需要液路系统,所以仪器的安装和使用非常方便。和仪器配套使用的单人份包装试剂既可以进行POCT检测(床边检验),又支持全自动的批量分析。仪器能与实验室信息系统双工连接,实现信息自动化。 星童医疗的CEO谭洪博士说:&ldquo 公司从成立之日起就瞄准中国体外诊断的高端市场,立志把国产免疫分析技术提升到世界领先水平。我们的宗旨是帮助医院更好地为患者提供医疗服务。这两款仪器取得CFDA的产品注册证,标志着我们已经逐步实现这个计划。星童目前正在积极组织生产,期待能很快满足市场的需求。&rdquo &ldquo 星童医疗非常了解中国客户的需求和特点,我们的产品就是针对中国国情设计的。产品定位准确,而且性能、指标、质量、用户体验都是世界一流的。我们已经在长三角地区多家医院演示和测试了这些产品,用户反应非常热烈。我们将建立完善的销售和客服体系,确保客户满意度。&rdquo 星童医疗的销售副总裁徐凯指出。
  • 罗氏诊断召回13台全自动化学发光免疫分析仪
    p  罗氏诊断产品(上海)有限公司报告,涉及产品的R1和R2注射器推杆可能存在安装倾斜的问题,这可能会引起推杆的破损,罗氏诊断产品(上海)有限公司对全自动化学发光免疫分析仪(注册证号:国械注进20173402266)主动召回。召回级别为三级。涉及产品的型号、规格及批次等详细信息见《医疗器械召回事件报告表》。/pp  附件:医疗器械召回事件报告表/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201807/insimg/116935b5-bf5f-4e46-909e-729bd4c437b9.jpg" title="gov_1532380240999.jpg"//ppbr//p
  • Nature|北大毛有东团队利用AI提升时间分辨冷冻电镜分析精度
    蛋白质降解调控是极其重要的基本生物化学过程,在细胞周期、信号转导、免疫响应、基因调控、新陈代谢、神经退行、癌症肿瘤、病毒感染以及蛋白毒性响应等主要细胞分子过程中发挥关键调控作用。在真核细胞中,绝大部分胞内蛋白都是通过泛素蛋白酶体途径(Ubiquitin-proteasome pathway),经过泛素化标记被蛋白酶体全酶降解的。2004年,Aaron Ciechanover, Irwin Rose和Avram Hershko三位科学家被授予了诺贝尔化学奖,以表彰他们对该泛素化通路介导蛋白质降解的历史性发现。蛋白酶体全酶,又称为26S proteasome,是由中间一个圆柱形20S核心颗粒和两端覆盖的一个或两个19S调节颗粒组成。19S包含一个环形异源六聚体马达——AAA-ATPase,通过多个协同ATP水解模式调控蛋白酶体降解泛素化底物。蛋白酶体功能紊乱与人体多种疾病相关,如癌症、神经退行性疾病和免疫疾病等。蛋白酶体是美国FDA批准的多种治疗癌症的上市小分子药物的直接靶标。在正常细胞中,蛋白酶体的功能受到多个水平的严格调控。去泛素化酶USP14是最主要的蛋白酶体调控分子,被认为是一个潜力巨大的治疗癌症和神经退行性疾病的重要靶标,其小分子抑制剂曾进入过美国一期临床研究,但围绕USP14功能机制的一系列悬而未决的关键问题极大限制了其靶向药物分子的开发和临床应用。USP14通过结合26S而被激活,然后以毫秒的时间尺度剪切底物上的泛素链。它是如何被蛋白酶体激活并调控蛋白酶体功能的,一直是全球研究机构和生物制药领域期待解决的关键科学问题。生命分子机器通过高度复杂的非平衡动力学过程和结构变化来实现其特殊功能,这一过程进而受到各种复杂分子间相互作用的精准调控。如何在原子水平直接观察天然态超大分子机器的功能态动力学过程,给现有的原子结构动态分析技术提出了空前挑战。毛有东教授实验室长期致力于发展基于冷冻电镜的动力学重建方法,围绕蛋白酶体、炎症小体等具有重大临床应用前景的靶点系统的结构功能、动力学机制和靶向调控分子设计深入开展前沿交叉研究——2016年报道了人源蛋白酶体基态的3.6 Å冷冻电镜结构及其他三个亚纳米分辨构象,并首次发现一个亚稳态构象的核心颗粒物转运通道处于开放状态(PNAS 2016 113: 12991-12996)。2017年,利用冷冻电镜解析高分辨率蛋白酶体19S调控复合体在结合组装伴侣p28的自由态的三维结构,阐释了组装伴侣蛋白Gankyrin/p28在蛋白酶体组装过程中构象选择的组装机理(Molecular Cell 2017 67: 322-333)。2018年4月,报道了6个ATPγS结合状态下的26S蛋白酶体动态结构,包括三个核心颗粒复合物开放态对应的亚稳简并态近原子分辨(4~5 Å)结构(Nature Communications 2018, 9: 1360)。2018年11月,在Nature首次报道了人源蛋白酶体26S在降解底物过程中的七种中间态构象的高分辨(2.8~3.6埃)结构,在原子水平呈现了蛋白酶体和底物相互作用的动态过程,首次实现了对AAA-ATPase六聚马达分子内ATP水解全周循环的完整过程的原子水平观测(Nature 2019 565:49-55)。这一系列工作揭示了蛋白酶体的原子架构、组装原理和降解泛素化底物的动力学基本规律。图1. (A) USP14调控下蛋白酶体复合体降解多泛素化底物的原子结构模型之一。(B) 时间分辨率冷冻电镜解析13种中间态的统计分布随蛋白质降解进程的时间演化。(Youdong Mao, CC BY 4.0)本研究课题进行之初,首先要克服的问题就是“时间分辨”。蛋白酶体降解底物的过程是很快的,时间尺度在毫秒至秒之间。正常条件下,想要通过冷冻电镜技术捕获此过程的中间态结构,是非常困难的。所以,课题组首先要让这个过程慢下来。通过大量的条件摸索,重建反应动力学体系和优化反应条件,包括优化缓冲体系、反应温度等条件,课题组优化出较为可行的实验方案,从而使得时间分辨冷冻电镜技术应用成为可能,最终获得了含时的45,193张USP14-26S复合体降解泛素底物过程中的冷冻电镜透射图样,挑取了3,556,806个USP14-26S-泛素底物复合体的颗粒图像。接下来面临的极端挑战就是“三维分类”,冷冻电镜捕获的复合体图像需要经过一系列的分类,将它们归为不同的构象类别,才能呈现出蛋白反应的动态过程。USP14结合到26S蛋白酶体后,使得降解底物的动力学过程更加复杂,想要在如此多的异构复合体颗粒图像中,鉴别出降解过程的各个时态的高分辨率非平衡构象,传统的三维分类方法是无法实现的。低精度的三维分类将导致低分辩的三维重建,从而无法获取原子水平的动力学信息,无法对含时的数据赋予自洽的动态变化的物理意义。课题组结合经过数年自主开发的新型深度学习高精度三维分类和四维重建方法,捕获了USP14-26S复合体降解多泛素化底物过程的13种不同功能中间状态的高分辨率(3.0~3.6埃)非平衡构象,通过时间分辨冷冻电镜分析,重建了受控蛋白酶体的完整动力学工作周期,并结合分子生物学功能和基因突变研究,阐明了USP14和26S相互调控活性的原子结构基础和非平衡动力学机制。研究发现USP14的活化同时依赖于泛素识别和蛋白酶体RPT1亚基的结合。出人意料的是,USP14通过别构效应,诱导蛋白酶体同时沿着两条并行状态转变路径发生构象变化;课题组成功捕获到了底物降解中间状态向底物抑制中间状态的瞬时转化。在底物降解途径中,USP14活化变构地重编程AAA-ATP酶马达的构象景观(Conformational landscape)和统计分布,并刺激20S底物通道的打开,从而观察到底物持续转运过程的ATPase六聚马达非对称ATP水解和近乎完整的全周循环周期。USP14-ATPase的动态相互作用,使得ATPase马达底物识别与26S自身的去泛素化酶RPN11催化发生去耦合效应,并在26S的泛素识别、底物的起始易位和泛素链回收过程中引入三个调控检查点(动力学分岔点)。这些发现为USP14调节26S的完整功能周期提供了全新的高分辨见解,并为USP14靶向药物治疗发现奠定了极为重要的机制基础。图2. 通过时间分辨冷冻电镜分析获取的USP14调控蛋白酶体底物降解的并行路径模型。(Youdong Mao, CC BY 4.0)Nature同期在线发表了题为“Control of human protein-degradation machinery revealed”的Research Briefing专栏推介文章,发表了审稿人和Nature编辑团队的官方点评,其中审稿人评价“该工作是一项重大研究,终于在原子水平解决了USP14活化和其调控蛋白酶体功能的机制问题”,Nature编辑团队指出“这一工作通过时间分辨冷冻电镜,结合功能分析,… … ,呈现了蛋白质降解过程中USP14和蛋白酶体的构象连续体”。这是首次将人工智能四维重建技术用于提升时间分辨冷冻电镜分析精度,针对重大疾病靶蛋白复合体,实现原子水平功能动力学观测的国际领先原创成果,展示了一类新型的蛋白质复合动力学研究范式。课题组博士后张书文与2019级博士生邹士涛为论文共同第一作者,毛有东教授为通讯作者。该论文的全部冷冻电镜数据在北大电子显微镜实验室和冷冻电镜平台上完成采集,大部分数据分析工作在北大高性能计算平台上完成。这项工作得到了北京市自然科学基金委员会重点专项、国家自然科学基金面上项目、国家杰出青年科学基金、国家重点实验室和北大-清华生命科学联合中心的支持。相关论文信息:https://doi.org/10.1038/s41586-022-04671-8Nature Research Briefing官方点评:https://doi.org/10.1038/d41586-022-01144-w
  • 全自动化学发光免疫分析仪器专项推进会召开
    国家重大仪器设备开发专项项目&ldquo 全自动化学发光免疫分析仪工程化开发及应用&rdquo 推进暨培训交流会召开  2013年9月,由北京市科学技术委员会组织,北京勤邦生物技术有限公司牵头的&ldquo 全自动化学发光免疫分析仪工程化开发及应用&rdquo 项目获得科技部2013年国家重大仪器设备开发专项立项。该项目凭借勤邦生物及10家合作单位雄厚的理论基础、技术基础、工程化基础及完善的产业化平台和广阔的市场前景,从29个试点部门和地区的500多的申报项目中脱颖而出。  项目由北京勤邦生物技术有限公司牵头,清华大学、煤炭科学研究总院软件所、北京市理化分析测试中心、军事医学科学院卫生环境医学研究所、中国农业科学院农业质量标准与检测技术研究所、商务部流通产业促进中心、北京出入境检验检疫局检验检疫技术中心、河南双汇投资发展股份有限公司、内蒙古蒙牛乳业(集团)股份有限公司分析中心、山东新希望六和集团有限公司等十一家单位共同承担。  2014年3月29日,国家重大科学仪器设备开发专项项目&ldquo 全自动化学发光免疫分析仪工程化开发及应用&rdquo 项目推进暨培训交流会在北京勤邦生物技术有限公司二楼大会议室召开。清华大学金国藩院士、水科院宋怿研究员、科技部条财司孙增奇处长、北京市科委条财处李建玲副处长、勤邦生物何方洋研究员、理化中心刘清珺研究员等技术专家、用户专家、科技部和北京市科委领导及项目组成员等70余人出席了会议,勤邦生物总经理万宇平作为会议主持人主持整场会议。会议现场  勤邦生物总裁马寅生在致辞中对各位专家、代表的到来表示热烈的欢迎和诚挚的感谢,项目总体负责人何方洋研究员/董事长代表项目总体组,宣布成立&ldquo 全自动化学发光免疫仪工程化开发及应用&rdquo 项目两组一会,技术专家组推荐金国藩院士为组长、项目总体组推荐何方洋研究员为组长、用户委员会推荐宋怿研究员为组长、项目监理组推荐李建玲副处长为组长。何方洋研究员/董事长还宣读了两组一会的责任与义务,并现场为&ldquo 两组一会&rdquo 专家颁发了聘书。项目负责人 何方洋研究员/董事长  项目技术负责人刘清珺研究员对&ldquo 全自动化学发光免疫分析仪工程化开发及应用&rdquo 项目总体实施方案进行了汇报。项目利用化学发光免疫分析技术、微光探测技术、磁富集分离技术、精密自动控制技术等领域最新成果,通过自主设计开发自动进样、免疫孵育、富集分离和微光探测等关键模块,采用系统集成,工程化开发,研制全自动化学发光免疫分析仪,旨在提升我国化学发光免疫分析仪核心模块的设计及产业化制造能力,为推动国产科学仪器的发展做出积极贡献。随后,刘清珺研究员介绍项目重点针对食品安全(品质)领域展开应用研究,选择六和集团、蒙牛集团、双汇集团等食品龙头企业,实现仪器功能性能、配套试剂和相关方法的验证。项目同时探索仪器在环境监测、医药卫生等领域的应用研究。最后刘清珺研究员对于此项目的项目团队、运行及管理机制、进度安排进行了介绍。项目技术负责人 刘清珺研究员  仪器研发总工刘平高工首先就恒温孵育模块、自动进样模块、微光探测模块三个关键模块和整机开发实施方案及目标参数进行汇报。并介绍了能实现上述功能及参数的两种主流方法,分别为机械臂三维移动加样轨道传递方式及机械臂圆周移动加样转盘式传递方式 就仪器工程化中基础材质、零件及元器件、模块化测试及整机四个部分的关键测试指标分别作了具体细致的汇报,如老化测试、精度测试、安全测试、抗干扰检验、加样针唯一精度测试、反应杯准确度测试、抗电测干扰测试、兼容性测定等,并就仪器可靠性试验方案进行了详细汇报。北京勤邦生物技术有限公司 刘平高工汇报整机开发与工程化开发方案  清华大学机械工程系杨东超副教授汇报了任务自动进样模块和微光检测模块的研究进展,并探讨和优化研究技术路线,提出后期仪器兼容性测试接口标准参数问题,最后对任务实施方案和预期成果进行介绍。清华大学机械工程系 杨东超副教授汇报自动进样和微光检测模块研究情况  煤炭科学研究总院软件研究所所长翟炯研究员汇报了所承担的分析控制及管理软件开发任务的研究内容、具体实施方案、技术路线、预期成果及考核指标等情况,汇报了任务年度计划及年度目标,最后介绍了研究基础及条件等。  北京市理化分析测试中心杜美红副研究员汇报了所承担任务的任务目标、任务技术路线、实施方案和考核指标等情况。  中国人民解放军军事医学科学院卫生学环境医学研究所宁保安副研究员汇报了所承担任务目前的研究基础,同时就特异分子标识的筛选与检测材料制备,以磁颗粒为核心的样品前处理,典型食源性致病菌及毒素酶免疫化学发光、特异基因化学发光分析方法,实际样品检测与仪器匹配方法及具体技术路线、实施方案、进度安排等进行了详细的汇报。  商务部流通产业促进中心李乐工程师汇报了所承担任务的详细技术路线、具体实施方案及任务进度安排,并对后期仪器特性、前处理、确证方案、仪器评价方法和SOP及任务标准化管理进行了介绍。  项目技术专家组专家在认真听取了项目/任务汇报以后,对整机开发的可靠性、稳定性、易操作性、软件开发界面友好型设计、模块设计及结果一致性等技术问题进行点评并提出具体要求 项目用户委员会专家对后期仪器应用开发、应用需求等问题提出了需求和建议 项目监理组组长李建玲对项目管理、财务管理提出具体监理要求 科技部条财司副处长刘春晓传达科技部项目管理、财务管理要求。科技部条财司副处长 刘春晓传达科技部项目管理要求  项目推进暨培训交流会取得圆满成功,为该重大科学仪器设备开发专项后续顺利实施奠定了良好的基础。承担单位及各合作单位表示将结合会上专家意见进一步完善细化实验方案,细化任务分工,推进项目具体实施。会后与会专家与项目组成员合影。与会专家与项目组成员合影
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制