硝化铪

仪器信息网硝化铪专题为您提供2024年最新硝化铪价格报价、厂家品牌的相关信息, 包括硝化铪参数、型号等,不管是国产,还是进口品牌的硝化铪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合硝化铪相关的耗材配件、试剂标物,还有硝化铪相关的最新资讯、资料,以及硝化铪相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

硝化铪相关的资料

硝化铪相关的论坛

  • 【求助】关于油的硝化

    由于油的有机物质含量比较高,所以硝化时特别困难,还经常硝化不完全。若在硝化前先将油在电炉上预硝化,重金属又会有损失。所以请教各位,有没有更好的硝化油的方法啊?谢谢!

  • 【求助】续:是否硝化完全

    请教各位:我做的是中药,硝化的时候用混酸(硝酸:高氯酸 4:1)15ML过夜预硝化,次日再加入10ml次混酸直接用电炉硝化,硝化液由棕色变无色,但仍然有一些白色悬浮颗粒样的东西,不知道大家有没有遇到过这样的情况呢?又是怎么解决的呢?亟待赐教....

  • 硝化反应温习

    硝化反应指有机化合物分子中引入硝基取代化合物的反应。工业上应用较多的是芳烃的硝化,以硝基取代芳环上的氢,可用以下通式表示:Ar—H+HNO3→Ar—NO2+H2O脂肪族化合物硝化时有氧化断键的副反应,工业上很少采用。  硝化方法 常用的硝化剂有各种浓度的硝酸、硝酸和硫酸的混合物等。根据被硝化物的性质和所用硝化剂的不同,硝化方法主要有:稀硝酸的硝化、浓硝酸的硝化、混酸(浓硫酸和浓硝酸)的硝化、有机溶剂中的硝酸硝化和非均相硝化等。其中混酸硝化主要用于苯、甲苯和氯苯的硝化。混酸硝化产物的需要量很大,因此是最重要的硝化反应过程。  硝化反应器 硝化反应在液相中进行,通常采用釜式反应器。根据硝化剂和介质的不同,可采用搪瓷釜、钢釜、铸铁釜或不锈钢釜。硝化过程大多采用间歇操作,产量大的硝化反应可采用连续操作,采用釜式连续硝化反应器或环形连续硝化反应器,实现多台串联完成硝化反应。环形连续硝化反应器的特点是传热面积大,搅拌良好,生产能力大,副反应产物少。  硝化反应过程中的安全 硝化反应要求保持适宜的温度,以避免浓硝酸的分解、氧化以及生成多硝基化合物等的副反应。多硝基化合物在受热、摩擦或撞击等条件下有可能出现爆炸的危险;有机物的氧化过程中有大量的氧化氮气体的释放,并使体系温度迅速升高,引起反应物从设备中喷出而发生爆炸事故。所以要仔细配制反应混合物并除去其中易氧化的组分,防止油类杂质进入反应设备,并要准确地对温度进行控制,实施连续混合以防止硝化反应过程中发生氧化作用。  硝化反应是放热反应,而且反应速度快,控制不好会引起爆炸。为了保持一定的硝化温度,通常要求硝化反应器具有良好的传热装置,一般除利用夹套冷却外,还在釜内安装冷却蛇管,装配温度自动控制系统。反应过程要连续搅拌,保证物料充分混合,并备有惰性气体搅拌和人工搅拌的辅助设备。搅拌机应有自动启动的备用电源,以防止机械搅拌在突然断电时停止转动而引起事故。搅拌轴要用硫酸作润滑剂,温度套管用硫酸作导热剂,不可使用普通机油或甘油,防止机油或甘油被硝化而形成爆炸性物质。  硝化设备要密封严密,防止硝化物料溅到蒸汽管道等高温表面上而引起燃烧或爆炸。如管道堵塞,可用蒸汽加热疏通,不能用金属棒敲打或明火加热。硝化厂房外安全地点,应经专门处理后堆放,不可随便挪用,以防止发生意外事故。  工业应用 由硝化反应生产的硝基烷烃为优质的溶剂,对纤维素化合物、聚氯乙烯、聚酰胺、环氧树脂等均有良好的溶解能力,并可作为溶剂添加剂和燃料添加剂。它们也是有机合成的原料,如用于合成羟胺、三羟甲基硝基甲烷、炸药、医药、农药和表面活性剂等。各种芳香族硝基化合物可用于染料、纺织等行业。

硝化铪相关的方案

硝化铪相关的资讯

  • 聚焦硝化 | 来自欧盟委员会联合研究中心的安全硝化工艺
    硝化反应是一类极其重要的化学反应,很多医药、农药、染料行业重要的中间体都是硝化物,他们都是不可替代的有机原料。但近年来由于安全事件的频繁发生,大众“谈硝色变”。就在上周结束的第四届石油和化工安全管理高层论坛中,多位专家就硝化行业的安全风险、硝化工艺的安全性、涉硝企业的安全水平提升,开展了探讨。与会专家一致认为硝化工艺虽然属于危险工艺,但是只要管控得当,也可以实现安全生产。加强反应传质传热、减少反应量以及全流程的连续化自动化管理成为实现硝化本质安全生产的共识。连续流化学工艺因为传质传热效率高、应用范围广、自动化程度高等优势成为目前硝化工艺研究的热点。本文是欧盟委员会联合研究中心的Dimitris Kyprianou等人发表在Molecules上的一篇全自动流动化学进行克级2, 4-二硝基甲苯(DNT)硝化为2, 4, 6-三硝基甲苯(TNT)的安全反应工艺研究成果。TNT2,4,6-三硝基甲苯(TNT)是世界上第一种能满足生产和军事要求的高爆炸性炸药,它首次合成于19世纪60年代,在之后直至今日依然被用为许多爆炸混合物的主要成分。二硝基甲苯(DNT)异构体2, 4-DNT和2,6-DNT经硝化后可得到高纯度TNT。(图1)传统的合成方法:生产军用级TNT需要高浓度硝酸(96%)和发烟硫酸(三氧化硫含量高达60%)来实现高于98%的转化率。但高浓度硝酸与发烟硫酸的处理、混合都有高的安全风险。采用传统釜式反应,混合滴加强酸反应,传质传热效率受到设备限制,容易导致“飞温”爆炸。实验设计与讨论流动化学实验:首先针对具有安全风险的反应物混酸做了优化:尝试应用98%H2SO4代替发烟硫酸。实验结果表明在流动化学工艺条件下普通硝化混合物(HNO3 65%,H2SO4 98%)进行2, 4-DNT流动硝化是可行的;同时研究者在产品出口中加入氯仿,这样即可以避免沉淀,预防堵塞现象,可以抑制氧化副反应,又有利于目标产物的提取;然后研究者对反应物料摩尔比、反应温度、停留时间等关键参数根据设计的实验条件和转化率进行实验,实验数据及评估过程选用DOE 软件(MODDE)。实验结果如图所示如表1所示,七个实验得到了高纯度的TNT(通过HPLC-DAD测定的99.0%)。为了更好地评估所研究参数对转化率的影响,并确定通过HPLC-DAD测定的高转化率(99%)的反应条件范围,从MODDE软件获得等高线图。图2显示了反应温度、反应物摩尔以及停留时间正交后对转化率的影响。通过实验及实验数据分析作者得到流动化学工艺最佳反应条件:HNO3 65%:H2SO4 98%=3:1(Wt),130oC,20 min.实验结果与分析将流动化学工艺最佳反应条件和传统釜式工艺的TNT产物进行外观及HPLC色谱结果对比,如下:由上图可以清晰地看到,流动化学产物样品为白色,而釜式反应样品由于杂质具有黄色。反应结果与讨论该研究实验证明了使用流动化学方法将2,4-DNT硝化为2,4,6-TNT的可行性。流动化学方法的主要优点为:更加安全:使用更安全的试剂(98%的H2SO4、65%的HNO3代替发烟硫酸和发烟HNO3。高效的传质传热性能,可以安全地施加高温,而釜式实验则由于失控反应的高风险而无法高温应用。反应效率提升:连续流工艺在较短的反应时间(20-30分钟)完成2,4-DNT到TNT的高转化率( 99%)反应,效率大大提升。实验方法论应用:通过实验设计方法研究并优化了关键参数(如HNO3:DNT摩尔比,停留时间和工艺温度)的影响。参考文献:Dimitris Kyprianou, Michael Berglund, Giovanni Emma, Grzegorz Rarat, David Anderson, GabrielDiaconu, Vassiliki Exarchou"Synthesis of 2,4,6-Trinitrotoluene (TNT) Using Flow Chemistry"DOI:10.3390/molecules25163586 扩展如何实现硝化反应的工业化本质安全生产已经成为迫切需要解决的问题。微通道连续流技术已经被验证可以原位上解决反应传质和传热,极大降低风险,成为越来越多企业硝化工艺改造的选择。康宁微通道连续流技术已经成功应用于万吨级通量的硝化反应;近阶段在硝化领域康宁做了多方面的努力:一方面,在各级应急管理厅和行业专家指导下,康宁和设计院、化学反应风险评价机构紧密合作,帮助现有硝化生产企业进行连续流微通道工艺的技术改造。另一方面,针对一些超大年产能的硝化生产项目需求,康宁利用G5单台年通量万吨级的处理能力,进行一硝和二硝连续化工艺系统设计,整体项目投资得到大幅度降低。如果你对微反应技术感兴趣,或有工艺需要咨询、开发和改造,请联系康宁吧!
  • 综述 l 芳香化合物连续硝化应用进展(一)
    综述 l 芳香化合物连续硝化应用进展(一)康宁用“心"做反应让阅读成为习惯,让灵魂拥有温度芳香化合物的硝化是常用的生产工艺,目前化工领域普遍采用的硝化方法是以混合酸作硝化剂、在釜式反应器中进行间歇式反应,在生产的各个环节都存在着资源、环境、安全、能源等问题。微通道反应器相对于釜式反应器拥有持液量少,换热效率高,传质效率好,过程可控等诸多优势,能有效解决硝化反应中的传质,换热,安全性等问题。随着微化工技术的发展,越来越多地被用于芳香化合物的硝化反应。小编将分两部分向读者介绍微通道反应器在芳香化合物硝化反应中应用进展的综述[1],希望可以对您有所启发和帮助。微通道反应器在以苯型芳香烃为底物的硝化反应中的应用1以一取代苯型芳香烃为底物的硝化反应氯苯的硝化氯苯的硝化为快速强放热反应,在传统釜式反应器中,反应液搅拌不均匀、反应放出的热量无法及时导出、反应温度不能精确控制,导致副反应发生,不能保障生产安全。微通道反应器具有良好的传热、传质能力,可以有效解决上述问题。余武斌等[2]利用微通道反应器研究了反应温度、原料配比、体积流速等主要因素对氯苯硝化(图1)的选择性、转化率的影响。结果:在最佳条件下单硝化产物n(对硝基氯苯)∶n(邻硝基氯苯)=1:0.56,与釜式反应器相比,副产物明显减少,转化率明显提高,生产能力提高了4个数量级,并且可以实现工艺的连续化操作苯甲醇硝化合成邻硝基C7H6O和间硝基C7H6O硝基C7H6O是许多精细化学品的重要中间体。Russo等[3]采用微通道反应器在高温和强酸条件下,由苯甲醇合成邻硝基C7H6O和间硝基C7H6O(图2);并将动力学模型应用在该工艺开发过程,通过优化反应条件来提高反应选择性。结果:在最佳条件下反应温度提高到68℃,邻硝基C7H6O和间硝基C7H6O的收率分别提高到42%和96%,这是传统釜式反应器不可能达到的,该方法为硝基C7H6O的工业化生产提供了一个很好的选择。三氟甲氧基苯的硝化4-(三氟甲氧基)硝基苯(NFBM)是三氟甲氧基苯胺的原料,是农药、药品和液晶材料的中间体。在用混合酸硝化三氟甲氧基苯的反应(图3)中, Wen等[4]应用微通道反应器进行工艺开发,基于其优异的传热性能和低滞留率,提出了一个准均相反应动力学模型,用于研究三氟甲氧基苯连续硝化的动力学和传质特性;并应用动力学模型对高硫酸强度下的反应进行了预测。结果:实验收率与模型预测值吻合较好。表明在未来的数字化生产中,微通道反应器有着广阔的发展前景。2以二取代苯型芳香烃为底物的硝化反应3-氟三氟甲苯硝化Chen等[5]在连续流微通道反应器中,以3-氟三氟甲苯为反应物、混合酸为硝化剂合成了5-氟-2-硝基三氟甲苯(图4);通过建立传热平衡模型来探索反应条件。结果:在最佳条件下的收率可达96.4%。该方法具有工艺安全性高、合成过程中杂质可控等优点,对促进未来微通道反应器在工业上的应用具有重要意义。连续安全合成邻硝基对叔丁基苯酚邻硝基对叔丁基苯酚是一种重要的有机化工中间体和化工原料。传统工艺是以对叔丁基苯酚为原料,在搪瓷反应釜中与稀硝酸进行硝化反应得到。该工艺反应剧烈放热,反应时间长,生产安全性较差。尚朝辉等[6]针对上述问题开发了一种在微通道反应器中连续安全合成邻硝基对叔丁基苯酚的方法(图5),通过加热柱塞泵实现对叔丁基苯酚的连续进料,在微通道反应器中实现对叔丁基苯酚和高浓度硝酸连续快速硝化。结果:在最佳条件下,对叔丁基苯酚的转化率达到98.7%,邻硝基对叔丁基苯酚的收率达到79.9%。在提高反应选择性的同时也提高了反应安全性。选择性快速硝化1-甲基-4-(甲基磺酰基)苯1-甲基-4-(甲基磺酰基)-2-硝基苯是合成除草剂甲基磺草酮的重要原料。Yu等[7]采用微通道反应器选择性快速硝化1-甲基-4-(甲基磺酰基)苯(图6)。结果:反应收率达到98%,反应时间缩短至5s,副产物显著减少,硝化产物质量显著提高。而且还减少了硫酸用量,降低了资源消耗。该方法适用于类似化合物的合成,有利于实现 工业规模生产。微通道反应器中进行乙酰基愈创木酚硝化5-硝基愈创木酚的钠盐是新型植物生长调节剂的主要成分,可提高农作物的质量和产量。Zhang等[8]以硝酸-乙酸为硝化剂,在微通道反应器中进行乙酰基愈创木酚硝化反应(图7),并建立了动力学模型,优化了反应条件。结果:在最佳条件下,5-硝基愈创木酚的收率达到90.7%,与传统釜式反应器相比,微通道反应器具有收率高、选择性高、反应时间短、硝酸用量少等优点。该方法为乙酰基愈创木酚的硝化策略奠定了基础。参考文献:[1] 化学与生物工程. 2021,38(02)[2] 精细化工,2010(1):97-100.[3] Chemical Enginering Journal, 2019, 377: 120346.[4] Reaction Chemistry &Enginering, 2018, 3(3): 379-387.[5] Journal of Flow Chemistry, 2020, 10(1): 207-218.[6] 南京工业大学学报(自然科学版),2019,41(5): 613-619.[7] Organic Proces Research & Development, 2016, 20(2): 199-203.[8] Journal of Flow Chemistry, 2016, 6(4): 309-314.下期预告将继续介绍多取代苯型芳香烃及其它苯型芳香烃为底物的硝化反应研究进展。如果您想要了解更多硝化应用案例,欢迎您直接留言
  • 明晚七点,康宁硝化之约,最美的化工人不见不散!
    回望康宁反应器技术在硝化行业多年工业化历程,一方面通过努力我们帮助多家硝化企业成功完成了连续流工艺改造,实现了安全生产,获得发展。另一方面携手客户共同向前的过程中,我们也积累了丰富的硝化工艺开发和工业化工程经验。为了让行业客户了解康宁AFR工业化进程并分享我们的硝化工业化经验,帮助客户高效实现硝化工艺开发、工艺改造和连续化生产过程。康宁反应器技术(以下简称康宁AFR)将于3月18日晚7点召开“回头看”康宁反应器硝化工业化进程怎么样了?硝化专题直播研讨会。本次直播康宁AFR区域商务总监马俊海先生、康宁AFR首席化学家王艳华先生与我们的重要工业化客户一起将与您共同探讨:康宁AFR硝化工业化项目的落地情况汇报:康宁AFR硝化工艺开发和工业化项目过程中的经验和教训;康宁AFR硝化工业化方向和未来计划。同时多位专家将在线实时与观众互动,畅所欲言为您的硝化连续安全生产之路献计献策。赶快行动吧,扫描下方二维码参与报名!直播议程:时间内容19:00-19:40回顾康宁AFR硝化工业化进程19:40-20:00硝化工业化康宁AFR在行动20:00-20:30在线解答与探讨本周五晚7点我们不见不散!更多咨询,欢迎关注“康宁反应器技术”微信公众号

硝化铪相关的仪器

  • 模拟体外消化,模拟人胃肠道消化过程,在体外条件下模拟体内消化吸收情况,用于预测或评估化合物的可消化性、生物利用率、释放动力学特性及结构变化等研究的体外模型。可选配小肠、大肠组件。此系统可以或部分替代活体实验,具有降低成本和时间,提高实验重复性和准确性,人工可监控等优点。 体外模拟消化实验系统可广泛应用于食品营养学,功能性活性物质代谢研究,药物释放动力研究,益生菌及益生元,食品毒理学研究等。模拟体外消化原理 认为不同物种消化系统的不一样,同一种“小白鼠”不可能达到不同生物实验的要求。准真实体外模拟消化实验系统:尽可能真实的模拟消化器官的形态/解剖结构/运动和生化环境。“准真实”的体外消化模型不仅要模拟胃肠道内的物理运动和化学条件,还应提供真实的胃肠道形态。 DIVHS(I)-IV体外模拟消化实验系统产品优势 1. 体外模拟消化实验系统:Ø 形态学仿生Ø 解剖结构仿生Ø 动力学仿生Ø 生化环境仿生Ø 体外实验结果接近真实体内实验2. 软件全程控制,无人值守工作;3. 重复性好,取样方便,在线测量;4. 可在消化道系统的不同部分、任意运转时间内被取出;5. 个性化定制:可根据实际需要选择其中单个或多个串联甚至并联使用,可拼接组件:口腔、胃、小肠、大肠;6. 售后支持:全套体外模拟消化实验系统解决方案:应用工程师可全程指导学生进行试验,直到可以独立上手;24小时电话响应,365天全天服务DIVHS(I)-IV体外模拟消化实验系统应用 体外模拟消化实验系统可广泛应用于食品营养学,功能性活性物质代谢研究,药物释放动力研究,益生菌及益生元,食品毒理学研究,大肠发酵,动物营养、动物消化及饲料研究等。公司为客户量身定制,科学规划,提供体外消化解决方案。可根据客户需求订制人胃模型,鼠胃模型,牛胃模型,猪胃模型,大肠发酵模型等。应用领域: 脂肪代谢蛋白质代谢碳水化合物多糖代谢淀粉消化率食物血糖指数功能成分微生物发酵益生菌发酵重金属影响真菌毒素等 动物营养DIVHS(I)-IV体外模拟消化实验系统技术参数(部分) 1、 触屏操作,PLC控制系统。2、 人胃的压缩和蠕动频率为1-15 cpm 连续可调。3、 十二指肠的蠕动频率为 1-40 cpm 连续可调。4、 小肠蠕动推进速度0-3 cm/s连续可调。5、 大肠蠕动推进速度0-8 cm/h连续可调。 DIVHS(I)-IV体外模拟消化实验系统发表文章(部分) [1] Chen L, Jayemanne A, Chen X D. Venturing into in vitro physiological upper GI system focusing on the motility effect provided by a mechanised rat stomach model[J]. Food Digestion, 2013, 4(1):36-48.以机械大鼠胃模型提供的动力效应为研究重点,研究体外生理上消化道系统[2] Chen L, Wu X, Chen X D. Comparison between the digestive behaviors of a new in vitro rat soft stomach model with that of the in vivo experimentation on living rats - motility and morphological influences[J]. Journal of Food Engineering, 2013, 117(2):183-192.新型体外大鼠胃软模型的消化行为与活体大鼠胃软模型的运动和形态影响的比较[3] Wu P, Chen L, Wu X, et al. Digestive behaviours of large raw rice particles in vivo and in vitro rat stomach systems[J]. Journal of Food Engineering, 2014, 142:170-178.大鼠胃系统在体内和体外的消化行为[4] Chen L, Xu Y, Fan T, et al. Gastric emptying and morphology of a ‘near real' in vitro human stomach model (RD-IV-HSM)[J]. Journal of Food Engineering, 2016, 183:1-8.胃排空与体外人胃模型(RD-IV-HSM)的形态学研究[5] Wu P, Deng R, Wu X, et al. In vitro gastric digestion of cooked white and brown rice using a dynamic rat stomach model[J]. Food Chemistry, 2017, 237:1065.采用动态大鼠胃模型对熟白米和糙米进行体外胃消化[6] Wu P, Liao Z, Luo T, et al. Enhancement of digestibility of casein powder and raw rice particles in an improved dynamic rat stomach model through an additional rolling mechanism[J]. Journal of Food Science, 2017, 82(3).在改进的动态大鼠胃模型中,通过额外的滚动机制提高酪蛋白粉和生大米颗粒的消化率[7] Bhattarai R R, Dhital S, Wu P, et al. Digestion of isolated legume cells in a stomach-duodenum model: three mechanisms limit starch and protein hydrolysis[J]. Food & Function, 2017, 8(7).分离的豆科细胞在胃十二指肠模型中的消化研究:限制淀粉和蛋白质水解的三种机制[8] Wu P, Bhattarai R R, Dhital S, et al. In vitro digestion of pectin- and mango-enriched diets using a dynamic rat stomach-duodenum model[J]. Journal of Food Engineering, 2017, 202:65-78.用动态大鼠胃十二指肠模型体外消化富含果胶和芒果膳食[9] Microwave pretreatment enhances the formation of cabbage sulforaphane and its bioaccessibility as shown by a novel dynamic soft rat stomach model[J]. Journal of Functional Foods, 2018, 43:186-195.微波预处理增加了卷心菜萝卜硫素的形成及其生物可利用率[10] Zhang X, Liao Z, Wu P, et al. Effects of the gastric juice injection pattern and contraction frequency on the digestibility of casein powder suspensions in an, in vitro, dynamic rat stomach made with a 3D printed model[J]. Food Research International, 2018, 106:495-502.在3D打印模型的体外动态大鼠胃中,胃液注射模式和收缩频率对酪蛋白粉悬浮液消化率的影响[11] Zhao B, Sun S, Lin H, et al. Physicochemical properties and digestion of the lotus seed starch-green tea polyphenol complex under ultrasound-microwave synergistic interaction[J]. Ultrasonics Sonochemistry, 2018.超声波-微波协同作用下莲子淀粉-绿茶多酚复合物的理化性质及消化情况[12] Wang J, Wu P, Liu M H, et al. An advanced near real dynamic in vitro human stomach system to study gastric digestion and emptying of beef stew and cooked rice[J]. Food & Function, 2019.一种先进的接近真实动态的体外人胃系统,用于研究炖牛肉和米饭的胃消化和排空
    留言咨询
  • 体外消化模拟,模拟人胃肠道消化过程,在体外条件下模拟体内消化吸收情况,用于预测或评估化合物的可消化性、生物利用率、释放动力学特性及结构变化等研究的体外模型。可选配小肠、大肠组件。此系统可以或部分替代活体实验,具有降低成本和时间,提高实验重复性和准确性,人工可监控等优点。 体外模拟消化实验系统可广泛应用于食品营养学,功能性活性物质代谢研究,药物释放动力研究,益生菌及益生元,食品毒理学研究等。体外消化模拟原理 认为不同物种消化系统的不一样,同一种“小白鼠”不可能达到不同生物实验的要求。准真实体外模拟消化实验系统:尽可能真实的模拟消化器官的形态/解剖结构/运动和生化环境。“准真实”的体外消化模型不仅要模拟胃肠道内的物理运动和化学条件,还应提供真实的胃肠道形态。 DIVHS(I)-IV体外模拟消化实验系统产品优势 1. 体外模拟消化实验系统:Ø 形态学仿生Ø 解剖结构仿生Ø 动力学仿生Ø 生化环境仿生Ø 体外实验结果接近真实体内实验2. 软件全程控制,无人值守工作;3. 重复性好,取样方便,在线测量;4. 可在消化道系统的不同部分、任意运转时间内被取出;5. 个性化定制:可根据实际需要选择其中单个或多个串联甚至并联使用,可拼接组件:口腔、胃、小肠、大肠;6. 售后支持:全套体外模拟消化实验系统解决方案:应用工程师可全程指导学生进行试验,直到可以独立上手;24小时电话响应,365天全天服务DIVHS(I)-IV体外模拟消化实验系统应用 体外模拟消化实验系统可广泛应用于食品营养学,功能性活性物质代谢研究,药物释放动力研究,益生菌及益生元,食品毒理学研究,大肠发酵,动物营养、动物消化及饲料研究等。公司为客户量身定制,科学规划,提供体外消化解决方案。可根据客户需求订制人胃模型,鼠胃模型,牛胃模型,猪胃模型,大肠发酵模型等。应用领域: 脂肪代谢蛋白质代谢碳水化合物多糖代谢淀粉消化率食物血糖指数功能成分微生物发酵益生菌发酵重金属影响真菌毒素等 动物营养DIVHS(I)-IV体外模拟消化实验系统技术参数(部分) 1、 触屏操作,PLC控制系统。2、 人胃的压缩和蠕动频率为1-15 cpm 连续可调。3、 十二指肠的蠕动频率为 1-40 cpm 连续可调。4、 小肠蠕动推进速度0-3 cm/s连续可调。5、 大肠蠕动推进速度0-8 cm/h连续可调。 DIVHS(I)-IV体外模拟消化实验系统发表文章(部分) [1] Chen L, Jayemanne A, Chen X D. Venturing into in vitro physiological upper GI system focusing on the motility effect provided by a mechanised rat stomach model[J]. Food Digestion, 2013, 4(1):36-48.以机械大鼠胃模型提供的动力效应为研究重点,研究体外生理上消化道系统[2] Chen L, Wu X, Chen X D. Comparison between the digestive behaviors of a new in vitro rat soft stomach model with that of the in vivo experimentation on living rats - motility and morphological influences[J]. Journal of Food Engineering, 2013, 117(2):183-192.新型体外大鼠胃软模型的消化行为与活体大鼠胃软模型的运动和形态影响的比较[3] Wu P, Chen L, Wu X, et al. Digestive behaviours of large raw rice particles in vivo and in vitro rat stomach systems[J]. Journal of Food Engineering, 2014, 142:170-178.大鼠胃系统在体内和体外的消化行为[4] Chen L, Xu Y, Fan T, et al. Gastric emptying and morphology of a ‘near real' in vitro human stomach model (RD-IV-HSM)[J]. Journal of Food Engineering, 2016, 183:1-8.胃排空与体外人胃模型(RD-IV-HSM)的形态学研究[5] Wu P, Deng R, Wu X, et al. In vitro gastric digestion of cooked white and brown rice using a dynamic rat stomach model[J]. Food Chemistry, 2017, 237:1065.采用动态大鼠胃模型对熟白米和糙米进行体外胃消化[6] Wu P, Liao Z, Luo T, et al. Enhancement of digestibility of casein powder and raw rice particles in an improved dynamic rat stomach model through an additional rolling mechanism[J]. Journal of Food Science, 2017, 82(3).在改进的动态大鼠胃模型中,通过额外的滚动机制提高酪蛋白粉和生大米颗粒的消化率[7] Bhattarai R R, Dhital S, Wu P, et al. Digestion of isolated legume cells in a stomach-duodenum model: three mechanisms limit starch and protein hydrolysis[J]. Food & Function, 2017, 8(7).分离的豆科细胞在胃十二指肠模型中的消化研究:限制淀粉和蛋白质水解的三种机制[8] Wu P, Bhattarai R R, Dhital S, et al. In vitro digestion of pectin- and mango-enriched diets using a dynamic rat stomach-duodenum model[J]. Journal of Food Engineering, 2017, 202:65-78.用动态大鼠胃十二指肠模型体外消化富含果胶和芒果膳食[9] Microwave pretreatment enhances the formation of cabbage sulforaphane and its bioaccessibility as shown by a novel dynamic soft rat stomach model[J]. Journal of Functional Foods, 2018, 43:186-195.微波预处理增加了卷心菜萝卜硫素的形成及其生物可利用率[10] Zhang X, Liao Z, Wu P, et al. Effects of the gastric juice injection pattern and contraction frequency on the digestibility of casein powder suspensions in an, in vitro, dynamic rat stomach made with a 3D printed model[J]. Food Research International, 2018, 106:495-502.在3D打印模型的体外动态大鼠胃中,胃液注射模式和收缩频率对酪蛋白粉悬浮液消化率的影响[11] Zhao B, Sun S, Lin H, et al. Physicochemical properties and digestion of the lotus seed starch-green tea polyphenol complex under ultrasound-microwave synergistic interaction[J]. Ultrasonics Sonochemistry, 2018.超声波-微波协同作用下莲子淀粉-绿茶多酚复合物的理化性质及消化情况[12] Wang J, Wu P, Liu M H, et al. An advanced near real dynamic in vitro human stomach system to study gastric digestion and emptying of beef stew and cooked rice[J]. Food & Function, 2019.一种先进的接近真实动态的体外人胃系统,用于研究炖牛肉和米饭的胃消化和排空
    留言咨询
  • 体外模拟消化,模拟人胃肠道消化过程,在体外条件下模拟体内消化吸收情况,用于预测或评估化合物的可消化性、生物利用率、释放动力学特性及结构变化等研究的体外模型。可选配小肠、大肠组件。此系统可以或部分替代活体实验,具有降低成本和时间,提高实验重复性和准确性,人工可监控等优点。 体外模拟消化实验系统可广泛应用于食品营养学,功能性活性物质代谢研究,药物释放动力研究,益生菌及益生元,食品毒理学研究等。体外模拟消化原理 认为不同物种消化系统的不一样,同一种“小白鼠”不可能达到不同生物实验的要求。准真实体外模拟消化实验系统:尽可能真实的模拟消化器官的形态/解剖结构/运动和生化环境。“准真实”的体外消化模型不仅要模拟胃肠道内的物理运动和化学条件,还应提供真实的胃肠道形态。 DIVHS(I)-IV体外模拟消化实验系统产品优势 1. 体外模拟消化实验系统:Ø 形态学仿生Ø 解剖结构仿生Ø 动力学仿生Ø 生化环境仿生Ø 体外实验结果接近真实体内实验2. 软件全程控制,无人值守工作;3. 重复性好,取样方便,在线测量;4. 可在消化道系统的不同部分、任意运转时间内被取出;5. 个性化定制:可根据实际需要选择其中单个或多个串联甚至并联使用,可拼接组件:口腔、胃、小肠、大肠;6. 售后支持:全套体外模拟消化实验系统解决方案:应用工程师可全程指导学生进行试验,直到可以独立上手;24小时电话响应,365天全天服务DIVHS(I)-IV体外模拟消化实验系统应用 体外模拟消化实验系统可广泛应用于食品营养学,功能性活性物质代谢研究,药物释放动力研究,益生菌及益生元,食品毒理学研究,大肠发酵,动物营养、动物消化及饲料研究等。公司为客户量身定制,科学规划,提供体外消化解决方案。可根据客户需求订制人胃模型,鼠胃模型,牛胃模型,猪胃模型,大肠发酵模型等。应用领域: 脂肪代谢蛋白质代谢碳水化合物多糖代谢淀粉消化率食物血糖指数功能成分微生物发酵益生菌发酵重金属影响真菌毒素等 动物营养DIVHS(I)-IV体外模拟消化实验系统技术参数(部分) 1、 触屏操作,PLC控制系统。2、 人胃的压缩和蠕动频率为1-15 cpm 连续可调。3、 十二指肠的蠕动频率为 1-40 cpm 连续可调。4、 小肠蠕动推进速度0-3 cm/s连续可调。5、 大肠蠕动推进速度0-8 cm/h连续可调。 DIVHS(I)-IV体外模拟消化实验系统发表文章(部分) [1] Chen L, Jayemanne A, Chen X D. Venturing into in vitro physiological upper GI system focusing on the motility effect provided by a mechanised rat stomach model[J]. Food Digestion, 2013, 4(1):36-48.以机械大鼠胃模型提供的动力效应为研究重点,研究体外生理上消化道系统[2] Chen L, Wu X, Chen X D. Comparison between the digestive behaviors of a new in vitro rat soft stomach model with that of the in vivo experimentation on living rats - motility and morphological influences[J]. Journal of Food Engineering, 2013, 117(2):183-192.新型体外大鼠胃软模型的消化行为与活体大鼠胃软模型的运动和形态影响的比较[3] Wu P, Chen L, Wu X, et al. Digestive behaviours of large raw rice particles in vivo and in vitro rat stomach systems[J]. Journal of Food Engineering, 2014, 142:170-178.大鼠胃系统在体内和体外的消化行为[4] Chen L, Xu Y, Fan T, et al. Gastric emptying and morphology of a ‘near real' in vitro human stomach model (RD-IV-HSM)[J]. Journal of Food Engineering, 2016, 183:1-8.胃排空与体外人胃模型(RD-IV-HSM)的形态学研究[5] Wu P, Deng R, Wu X, et al. In vitro gastric digestion of cooked white and brown rice using a dynamic rat stomach model[J]. Food Chemistry, 2017, 237:1065.采用动态大鼠胃模型对熟白米和糙米进行体外胃消化[6] Wu P, Liao Z, Luo T, et al. Enhancement of digestibility of casein powder and raw rice particles in an improved dynamic rat stomach model through an additional rolling mechanism[J]. Journal of Food Science, 2017, 82(3).在改进的动态大鼠胃模型中,通过额外的滚动机制提高酪蛋白粉和生大米颗粒的消化率[7] Bhattarai R R, Dhital S, Wu P, et al. Digestion of isolated legume cells in a stomach-duodenum model: three mechanisms limit starch and protein hydrolysis[J]. Food & Function, 2017, 8(7).分离的豆科细胞在胃十二指肠模型中的消化研究:限制淀粉和蛋白质水解的三种机制[8] Wu P, Bhattarai R R, Dhital S, et al. In vitro digestion of pectin- and mango-enriched diets using a dynamic rat stomach-duodenum model[J]. Journal of Food Engineering, 2017, 202:65-78.用动态大鼠胃十二指肠模型体外消化富含果胶和芒果膳食[9] Microwave pretreatment enhances the formation of cabbage sulforaphane and its bioaccessibility as shown by a novel dynamic soft rat stomach model[J]. Journal of Functional Foods, 2018, 43:186-195.微波预处理增加了卷心菜萝卜硫素的形成及其生物可利用率[10] Zhang X, Liao Z, Wu P, et al. Effects of the gastric juice injection pattern and contraction frequency on the digestibility of casein powder suspensions in an, in vitro, dynamic rat stomach made with a 3D printed model[J]. Food Research International, 2018, 106:495-502.在3D打印模型的体外动态大鼠胃中,胃液注射模式和收缩频率对酪蛋白粉悬浮液消化率的影响[11] Zhao B, Sun S, Lin H, et al. Physicochemical properties and digestion of the lotus seed starch-green tea polyphenol complex under ultrasound-microwave synergistic interaction[J]. Ultrasonics Sonochemistry, 2018.超声波-微波协同作用下莲子淀粉-绿茶多酚复合物的理化性质及消化情况[12] Wang J, Wu P, Liu M H, et al. An advanced near real dynamic in vitro human stomach system to study gastric digestion and emptying of beef stew and cooked rice[J]. Food & Function, 2019.一种先进的接近真实动态的体外人胃系统,用于研究炖牛肉和米饭的胃消化和排空
    留言咨询

硝化铪相关的耗材

  • 消化管
    LabS消化管采用优质实验玻璃加工制造,品质优良,是世界多家仪器公司的配套替代产品,更是自己品牌LabS消化系统标配的样品消化和其它前处理的专用试管。选材和加工特别考究,材质和加工选用了与国际顶级产品德国Gerhardt和以前的瑞典tecator(已被FOSS并购)相同。所有LabS消化管都经过特殊退火处理,消除了内应力,保证不会出现加热过程炸裂、空孔等廉价试管常见的烦心事。尺寸控制在各家产品的内限,独特的接口结构,不但使LabS消化管适合于LabS消化系统、Gerhardt消化系统、FOSS消化系统及一些国产常规消化等产品的优质配套,而且因其特别设计的接口结构,使与其连接的橡胶接头使用寿命延长一倍以上(以目前FOSS和任何国产管来比较)。常备货物:30*41mm ,250ml ,做常量分析用其它规格(100ml/400ml等)需要订货
  • 特大消化管
    特大消化管用途:1、专门用于处理微含量样品的增量浓缩消化。最常用的应用是自来水中含氮量的测定,可取水样品量多达500ml,快速浓缩和消化一步完成,在专用的系统(如Gerhardt消化器/LabS消化器)上样品在1.5小时内处理完毕。2、消化冒泡严重的样品。特大容量空间确保样品不会冲出。3、做固体样品等的凯氏蒸馏专用。如加固体催化剂(德瓦达合金、镁粉、铬粉、铁粉等)的直接蒸馏测挥发性盐基氮、硝态氮等,或者固体样品直接蒸馏。
  • 特大消化管
    特大消化管用途: 1、专门用于处理微含量样品的增量浓缩消化。最常用的应用是自来水中含氮量的测定,可取水样品量多达500ml,快速浓缩和消化一步完成,在专用的系统(如Gerhardt消化器/LabS消化器)上样品在1.5小时内处理完毕。 2、消化冒泡严重的样品。特大容量空间确保样品不会冲出。 3、做固体样品等的凯氏蒸馏专用。如加固体催化剂(德瓦达合金、镁粉、铬粉、铁粉等)的直接蒸馏测挥发性盐基氮、硝态氮等,或者固体样品直接蒸馏。

硝化铪相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制