热分析仪器

仪器信息网热分析仪器专题为您提供2024年最新热分析仪器价格报价、厂家品牌的相关信息, 包括热分析仪器参数、型号等,不管是国产,还是进口品牌的热分析仪器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合热分析仪器相关的耗材配件、试剂标物,还有热分析仪器相关的最新资讯、资料,以及热分析仪器相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

热分析仪器相关的厂商

  • 南京凯迪高速分析仪器有限公司是一家集科研、生产及销售为一体的专业化科技企业。专业生产各类多元素分析仪,碳硫分析仪,炉前碳硅分析仪,高频红外碳硫分析仪,炉前铁水质量管理仪,炉前铁水分析仪,合金分析仪,矿石分析仪,不锈钢分析仪,有色金属分析仪,红外碳硫分析仪,五大元素分析仪,金属元素分析仪,电脑碳硫分析仪,元素分析仪,三元素分析仪,铁水质量管理仪,铁水在线分析仪,铁水碳硅分析仪,热分析仪,碳硅分析仪,炉前快速分析仪器,红外碳硫仪,钢铁分析仪,钢铁成分分析仪,智能电脑碳硫联测分析仪,定硫仪,碳硫仪,定碳仪,化验设备,分析仪器,实验设备,化验设备,生铁化验仪器,碳硫高速分析仪,五金分析仪器,五金化验仪,高速分析仪器,三元素检测仪,微机元素分析仪,微机碳硫分析仪,铁合金分析仪,铜合金分析仪,铝合金分析仪,铝合金化验仪器,锌合金分析仪,镁合金分析仪,不锈钢分析仪器,矿石成分分析仪器,矿石化验仪器,铁矿石化验仪器,矿石分析仪器,矿石成分分析仪器,铝矿石分析仪器,铝土矿分析仪器,镁矿分析仪器,铝矿石化验仪,锌矿石分析仪器,锌矿石化验仪器,磁铁矿化验仪器,磁铁矿品位分析仪,镍矿石品位分析仪,铁矿石品位分析仪,矿石品位分析仪器,镁矿化验仪器,磁铁矿分析仪器,铁矿石分析仪器,矿石元素分析仪器,铁矿分析仪器,锌矿化验设备,铁矿化验设备,镁矿化验仪器,矿石品位分析仪器,铁矿石品位分析仪,镍矿石品位分析仪,矿石元素测定仪,矿石化验设备,采矿分析仪器,开矿化验仪器,精矿粉分析仪器,矿粉分析仪器,铁矿粉分析仪,铁粉化验仪器,铝矿石分析仪,铜矿石分析仪,铁矿石分析仪,微量元素分析仪,现场分析仪器,焦炭分析仪,铸造分析仪,黑色金属分析仪,光谱仪,分光光度计,金相显微镜,元素分析,元素化验,制样设备等金相仪器。其产品广泛应用于冶金,铸造,采矿,建筑,机械,电子,环保,卫生,化工,电力,技术监督、质量监督及大专院校等部门对钢铁分析、冶金化验、铸造分析、化工设备、矿石分析等一系列产品的分析,深受用户喜爱。可测定生铁、铸铁、球铁、普碳钢、合金钢、合金铸铁、不锈钢、各种矿石、有色金属中碳、硫、锰、磷、硅、镍、铬、钼、铜、钛、锌、钒、镁、稀土等多种材料中各种化学成份的百分含量 。与传统法比较,其速度和精度已有了极大提高,常规的炉前控制元素检测速度达到了"读秒"水准. 仪器测量范围广、精度高,高、中、低档齐全,并能接受用户特殊定货。
    留言咨询
  • 400-801-5339
    自1957年以来,德国林赛斯在热分析和热物性领域不断推陈出新,提供了先进的设备,可靠的服务和完善的解决方案。 我们始终坚持以产品创新和客户满意度为第一导向。“客户至上、品质第一、探索创新”的理念让林赛斯在前沿科研机构和工业企业中享负盛名。多年来,一直为热分析研究领域提供优质的仪器。 林赛斯热分析业务涉及多个应用领域的设备研发,包括在聚合物、化工、无机建筑材料和环境分析行业的产品性能检测。完全适用于固体、液体和熔液等不同状态样品的热物性分析。 林赛斯公司因技术领先而得以不断发展壮大。我们以高标准、高精度和严要求来研发热分析仪器。创新驱动和高精确度让我们成为热分析领域倍受客户信赖的一流生产商。 针对热分析仪器发展领域现存的前沿研究方向和高精准度需求,林赛斯不吝大力投资,始终坚持着“客户利益至上”的服务理念。
    留言咨询
  • 400-601-1369
    德国耐驰仪器制造有限公司(NETZSCH Scientific Instruments Trading (Shanghai) Ltd.)是世界著名的分析仪器制造厂商之一,其产品主要包括热分析仪器、导热分析仪与树脂固化监测仪三大类。在热分析仪器领域,耐驰公司拥有60余年的软、硬件研制及应用经验,其产品覆盖了热分析的各个分支领域,从差热、热重到热机械、热膨胀及热质热红联用,我们都能提供一系列不同型号不同配置的具有高精度高稳定性与优异性价比的仪器,温度范围上至高温2800℃,下及低温-180℃。耐驰树脂固化监测仪采用美国麻省理工大学技术,包括介电法、超声波法等一系列仪器,广泛应用于热固性树脂、油漆、涂料、复合材料与电子材料等领域的研发、质控与工艺优化。耐驰公司在导热分析仪领域同样处于世界领先地位,针对不同应用提供了一系列的导热测试仪,包括激光法、热流法、热板法、保护热流法与热线法等各种原理,其测试温度范围为-150℃...2000℃,导热率范围为0.005...1500W/(m*k)。作为驰名世界的仪器供应商,耐驰公司在全球二十余个国家设有分公司和代表处。在德国总部与美国设有多个研究实验室,专为国际市场提供应用及技术支持。实验室每年都发表聚合物、陶瓷、金属等研究领域的技术年鉴和图谱集。耐驰仪器公司于1996年进入中国,凭借其仪器性能上的优势,强大的技术支持,完善的售前、售后服务,在国内的用户不断增加。耐驰公司现已在上海、北京、广州、成都、西安、沈阳、济南、武汉等地设立了办事处和维修站,在上海设有技术服务中心与应用实验室。德国耐驰仪器制造公司以其雄厚的实力和可靠的品质,愿与您共创美好的前程。
    留言咨询

热分析仪器相关的仪器

  • 日立分析仪器正式将“New STA系列” TG-DSC热分析仪引入中国内地市场。本系列具备令人惊叹的基线稳定性[1]和高灵敏度测量能力,包括STA200、STA200RV和STA300三款,分别为普通型号、适用于试样实时观察的型号,以及高温型号。热分析仪是指在程序控温等条件下,测量物质物理性质与温度或时间关系的仪器。根据测量方法的不同,热分析仪有测量重量变化的“热重法(TG)”、测量温度变化的“差热分析(DTA)”,以及测量热量的“差示扫描量热法(DSC)”等诸多种类,被广泛应用于塑料、复合材料、医药品等有机材料,陶瓷、合金等无机材料行业,适合从研究开发到质量管理、故障分析等多种的场景。近年来,随着材料和素材的高功能化、复合化,热分析仪的热性能的要求也多样化了。在高性能的电子产品的故障分析中,为了进行极微量的试验和成分的测量,需要支持高灵敏度的测量的高基线稳定性。另外,汽车、食品相关领域等利用的复合材料是由不同的材料组合而成,因此除了单次测得多个数据的能力,复合型分析的需求也日益增长。一、 高水准TG基线稳定性日立New STA系列继续采用高灵敏度 “数字水平差动型天平”[2],这一结构在日立原有的热分析仪中就有不俗表现。New STA系列更是新增了能够确保天平部位温度恒定的新结构,消除了受加热炉温度变化影响而导致的微小重量误差,让基线稳定性水平远超日立原有产品。在加热炉内未放置试样的状态下,从室温加热至1,000℃,重量变动幅度仅在10μg以下。二、 划时代的TG-DSC同时测量装置日立原有的热分析仪以热重法-差热分析(TG-DTA)方式进行同时测量,但由于DSC比DTA更能够精确地定量试样的热量变化,现在业界对热重法-差示扫描量热法(TG-DSC)同时测量的需求不断上升,日立为满足客户需求,实现了TG-DSC的同时测量。New STA系列通过同时测量质量变化和热量变化,实现了复合型的定量分析。三、 多项改进带来新的可能New STA系列对选配件试样观察系统(Real View )进行了功能升级,现具备数字变焦、画面编辑、长度测量、颜色分析等诸多实用功能。此外,该系列具备重新设计的气流路径,气体置换性能大幅提升;还标配Mass Flow Controller[3],气氛控制和其操作性能也登上了一个新台阶。[1] 基线稳定性:热重法(TG)测定时,抑制因温度变化导致的天平结构热膨胀所引起的重量变动,或对该过程进行测量。[2] 数字水平差动型天平:一侧为天平的倾斜测量部件,另一侧采用配置了试样和标准试样的天平结构,将试样和标准试样各自的重量进行数字化处理,以提升性能的热重法(TG)测量。[3] Mass Flow Controller:加热炉内对气流进行程序控制的产品。
    留言咨询
  • 日立分析仪器正式将“New STA系列” TG-DSC热分析仪引入中国内地市场。本系列具备令人惊叹的基线稳定性[1]和高灵敏度测量能力,包括STA200、STA200RV和STA300三款,分别为普通型号、适用于试样实时观察的型号,以及高温型号。热分析仪是指在程序控温等条件下,测量物质物理性质与温度或时间关系的仪器。根据测量方法的不同,热分析仪有测量重量变化的“热重法(TG)”、测量温度变化的“差热分析(DTA)”,以及测量热量的“差示扫描量热法(DSC)”等诸多种类,被广泛应用于塑料、复合材料、医药品等有机材料,陶瓷、合金等无机材料行业,适合从研究开发到质量管理、故障分析等多种的场景。近年来,随着材料和素材的高功能化、复合化,热分析仪的热性能的要求也多样化了。在高性能的电子产品的故障分析中,为了进行极微量的试验和成分的测量,需要支持高灵敏度的测量的高基线稳定性。另外,汽车、食品相关领域等利用的复合材料是由不同的材料组合而成,因此除了单次测得多个数据的能力,复合型分析的需求也日益增长。一、 高水准TG基线稳定性日立New STA系列继续采用高灵敏度 “数字水平差动型天平”[2],这一结构在日立原有的热分析仪中就有不俗表现。New STA系列更是新增了能够确保天平部位温度恒定的新结构,消除了受加热炉温度变化影响而导致的微小重量误差,让基线稳定性水平远超日立原有产品。在加热炉内未放置试样的状态下,从室温加热至1,000℃,重量变动幅度仅在10μg以下。二、 划时代的TG-DSC同时测量装置日立原有的热分析仪以热重法-差热分析(TG-DTA)方式进行同时测量,但由于DSC比DTA更能够精确地定量试样的热量变化,现在业界对热重法-差示扫描量热法(TG-DSC)同时测量的需求不断上升,日立为满足客户需求,实现了TG-DSC的同时测量。New STA系列通过同时测量质量变化和热量变化,实现了复合型的定量分析。三、 多项改进带来新的可能New STA系列对选配件试样观察系统(Real View )进行了功能升级,现具备数字变焦、画面编辑、长度测量、颜色分析等诸多实用功能。此外,该系列具备重新设计的气流路径,气体置换性能大幅提升;还标配Mass Flow Controller[3],气氛控制和其操作性能也登上了一个新台阶。[1] 基线稳定性:热重法(TG)测定时,抑制因温度变化导致的天平结构热膨胀所引起的重量变动,或对该过程进行测量。[2] 数字水平差动型天平:一侧为天平的倾斜测量部件,另一侧采用配置了试样和标准试样的天平结构,将试样和标准试样各自的重量进行数字化处理,以提升性能的热重法(TG)测量。[3] Mass Flow Controller:加热炉内对气流进行程序控制的产品。
    留言咨询
  • 日立分析仪器正式将“New STA系列” TG-DSC热分析仪引入中国内地市场。本系列具备令人惊叹的基线稳定性[1]和高灵敏度测量能力,包括STA200、STA200RV和STA300三款,分别为普通型号、适用于试样实时观察的型号,以及高温型号。热分析仪是指在程序控温等条件下,测量物质物理性质与温度或时间关系的仪器。根据测量方法的不同,热分析仪有测量重量变化的“热重法(TG)”、测量温度变化的“差热分析(DTA)”,以及测量热量的“差示扫描量热法(DSC)”等诸多种类,被广泛应用于塑料、复合材料、医药品等有机材料,陶瓷、合金等无机材料行业,适合从研究开发到质量管理、故障分析等多种的场景。近年来,随着材料和素材的高功能化、复合化,热分析仪的热性能的要求也多样化了。在高性能的电子产品的故障分析中,为了进行极微量的试验和成分的测量,需要支持高灵敏度的测量的高基线稳定性。另外,汽车、食品相关领域等利用的复合材料是由不同的材料组合而成,因此除了单次测得多个数据的能力,复合型分析的需求也日益增长。一、 高水准TG基线稳定性日立New STA系列继续采用高灵敏度 “数字水平差动型天平”[2],这一结构在日立原有的热分析仪中就有不俗表现。New STA系列更是新增了能够确保天平部位温度恒定的新结构,消除了受加热炉温度变化影响而导致的微小重量误差,让基线稳定性水平远超日立原有产品。在加热炉内未放置试样的状态下,从室温加热至1,000℃,重量变动幅度仅在10μg以下。二、 划时代的TG-DSC同时测量装置日立原有的热分析仪以热重法-差热分析(TG-DTA)方式进行同时测量,但由于DSC比DTA更能够精确地定量试样的热量变化,现在业界对热重法-差示扫描量热法(TG-DSC)同时测量的需求不断上升,日立为满足客户需求,实现了TG-DSC的同时测量。New STA系列通过同时测量质量变化和热量变化,实现了复合型的定量分析。三、 多项改进带来新的可能New STA系列对选配件试样观察系统(Real View )进行了功能升级,现具备数字变焦、画面编辑、长度测量、颜色分析等诸多实用功能。此外,该系列具备重新设计的气流路径,气体置换性能大幅提升;还标配Mass Flow Controller[3],气氛控制和其操作性能也登上了一个新台阶。[1] 基线稳定性:热重法(TG)测定时,抑制因温度变化导致的天平结构热膨胀所引起的重量变动,或对该过程进行测量。[2] 数字水平差动型天平:一侧为天平的倾斜测量部件,另一侧采用配置了试样和标准试样的天平结构,将试样和标准试样各自的重量进行数字化处理,以提升性能的热重法(TG)测量。[3] Mass Flow Controller:加热炉内对气流进行程序控制的产品。
    留言咨询

热分析仪器相关的资讯

  • 热分析仪器的基本结构单元
    p  热分析技术根据被测物理量的物理性质来分共有九大类、17种方法。所组成的热分析仪器就更多了。通常热分析仪器由程序温度控制器、炉体、物理量检测放大单元、微分器、气氛控制器、显示和打印以及计算机数据处理系统7部分组成。其框图如图所示。/pp/pp style="text-align: center "img width="400" height="370" title="热分析仪器框图.jpg" alt="热分析仪器框图.jpg" src="https://img1.17img.cn/17img/images/201808/uepic/50c889b4-1faf-48a2-a5d8-4f834ac222d1.jpg"//pp style="text-align: center "strong热分析仪器框图/strong/ppstrong一、程序温度控制器/strong/pp  它是使试样在一定温度范围内进行等速升温、降温和恒温。通常使用的升温速率为10℃/min或20℃/min。而程序温度速率可为0.01~999℃/min。近代程序温控仪大多由微机完成程序温度的编制、热电偶的线性化、PID调节以及超温报警等功能。/ppstrong二、炉体部分/strong/pp  它是使试样在加热或冷却时得到支撑。炉体部分包括加热元件、耐热瓷管、试样支架、热电偶以及炉体可移动的机械部分等。炉体的温度范围最低为-269℃(液氦制冷),最高可达2800℃(在高真空下用石墨管或钨管加热,用光学高温计测温)。炉体内的均温区要大,试样放在均温区中。因为试样各部分的温度是否均匀对热分析的结果有一定的影响。/ppstrong三、物理量检测放大单元/strong/pp  热分析仪器必须能随试样温度的变化及时而准确地检测试样的某些物理性质。span style="color: rgb(255, 0, 0) "由于绝大多数被测物理量是非电量,它们的变化往往又是很微小的,为了及时而准确地检测它们,需要把这些非电量转换成电量,加以放大,再通过定标计算出被测参数。/span差示测量方法可以提高测量的span style="color: rgb(0, 176, 240) "灵敏度/span和span style="color: rgb(0, 176, 240) "准确度/span,因此应用得很普遍。span style="color: rgb(255, 0, 0) "非电量转变为电量可以通过各种传感器来完成。/span例如span style="color: rgb(0, 176, 240) "称重传感器、位移传感器、光电传感器、热电偶传感器、声电传感器/span等。物理量的检测系统是各种热分析仪器的span style="color: rgb(255, 0, 0) "核心/span,也是区分各种热分析仪器的本质部分,它的性能是衡量热分析仪器水平的一个重要标志。/ppstrong四、微分器/strong/pp  它是把非电量传感器的放大信号经过一次微分(导数),从微分(对时间)曲线中可以更明显地看出放大信号的拐点、最大斜率等。/ppstrong五、气氛控制器/strong/pp  热分析仪器对试样所处的气氛条件有各种要求,因此,大多热分析仪器备有气氛控制系统。热分析对气氛条件的要求有如下原因。/pp  高温下试样可能在空气中被氧化而完全改变原来的特性,故要求在真空或惰性气氛下升温,或在某种反应气氛下升温。/pp  热分析与其他分析技术联用时,要求把热分析过程中所产生的气相产物利用流动载气送出。/pp  要求有适当的气路把热分析过程中所产生的腐蚀性气体或有毒气体排出。/pp  相当的热分析课题是研究气氛的种类、压力、流动速率以及活性程度等对热分析结果的影响。热分析仪器按气氛条件可分为高真空型、低真空型、常压型、高压型、静态型和流动型等。/ppstrong六、计算机数据处理系统/strong/pp  近年来,由于计算机的快速发展、软件的不断完善,大大推动了数据处理系统。首先把采集来的数据进行各种方法的滤波平滑 然后,应用软件对标准物质进行温度校正和焓变校正、长度校正、质量校正以及基线背景线的扣除等。应用软件求取试样的焓变值、熔点、晶相转变温度、玻璃化转变温度、试样成分的组成、膨胀系数等。还有一些软件需要对数学公式进行分析、简化,适合于热分析应用。例如动力学参数的求取、药品纯度的求取。/ppstrong七、显示和打印/strong/pp  它是把热分析曲线及其处理结果在显示屏上显示出来,并用彩色喷墨机或激光打印机打印出来。同时在显示屏上用鼠标进行各种操作。/p
  • 热分析钱义祥老先生:热分析仪器(方法)选择的哲理
    p span style="color: rgb(112, 48, 160) "(本文系仪器信息网独家约稿,未经许可,其它媒体不得转载)  /span/pp 应用先进仪器和方法进行科学与技术的基础研究和应用开发。如何选用近代先进仪器和科学方法呢?钱义祥老先生的这篇“热分析仪器(方法)选择的哲理”将有助你选择先进仪器和科学方法。帮助你从多种备选对象中进行挑选与确定,使你学会择优选择。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201610/insimg/25eddf60-8d71-4ed7-b6ac-1205345e0568.jpg" title="" style="width: 450px height: 503px " height="503" hspace="0" border="0" vspace="0" width="450"//pp style="text-align: center "strong钱义祥老先生某次出差夜晚其学生拍摄/strong/pp  strong1.1 " 选择" 的哲理/strong/pp  人,不由自己的选择而出生,朦胧地踏上漫长的选择之路。选择伴随科学人的一生,渐进渐行,格物致理(探究事物的原理法则,而总结为理性知识并加以运用)。人是选择的主体,“选择”是一个最易产生共鸣的话题。/pp  从哲学的角度看,选择是反映主体与客体关系的一个范畴,主体与客体在相互作用过程中,主体根据其自身的存在现状、目的需要、价值尺度,对依赖主体活动而存在的事物的多种可能性关系进行分析、比较,抉择。它是主体积极能动、自觉自由的本质力量的一种表现。这种力量存在于人的一切活动过程中,既存在于人的思维过程中,也存在于人的实践行为中。/pp  1.1.1研究方法是一个不断发展的动态过程。/pp  科学研究是一个动态的永无止境的探索过程。研究方法总是以符合研究需要为前提,与科学研究相适应,因此研究方法也是一个不断发展的更新过程。/pp  前人的研究成果,概括地说,无非是资料、研究方法和结论三个方面。我们研究前人的研究成果,主要目的是了解他获得的结论及获得这个结论的方法。科学史的书籍记录了科学家的发现和科学家获得发现的方法。可见研究方法及其选择在科学研究中的重要性。方法的选择要具有合理性、新颖性、独创性、可实现性。为避免选择性偏差,对研究课题和热分析方法了解得越深越多,选择热分析方法就越有依据,就越合理和适用,越能满足科学研究的需要。/pp  1.1.2热分析方法选择的主体是人/pp  选择是一个词语,这个词语主要是指一个人要挑选什么,要做出什么决定,选取什么.这是一个很重要的字眼。“选择”是存在于人的思维和实践行为方式中的积极能动的能力。/pp  热分析方法选择的主体是人,是人的实践行为。人的具体行为方式是由人的选择来确定的。选择决定于主体,并不是说主体可以随意选择。主体的选择不仅受到客观外部条件的制约,也受到主体自身存在状况的限制。/pp  在一定的外部条件下,人的能力是选择的关键。应该培养,发展、完善主体, 提高主体的选择能力。成功的选择,能最大限度地实现目的,满足主体的需要。/pp  热分析方法的选择不仅受到主体自身存在状况的限制,也受到客观外部条件的制约。受仪器的制约和限定的典型事例是微重力下的热分析研究。微重力科学作为一门近代科学,是随着载人航天活动的发展而迅速发展的。微重力的热分析研究有望应用于空间材料科学,其研究障碍乃在于缺乏研究仪器和研究方法。目前商品化的热分析仪器仅适用于在万有引力条件下进行热分析实验,微重力条件下的热分析仪器尚待开发。微重力的热分析研究必定伴生新的研究方法的创立。方法的创立反过来又指导微重力的热分析研究。/pp  选择意味着在多种事物中挑选一种事物或多种事物。热分析方法选择过程中,选择本身也是一种探索,乃是对人的选择能力的一种检验。/pp  选择是一个过程,有可能在弹指一瞬间完成;有时通过“试错”来选择热分析方法和实验方法 某些特例,也有可能永远选择不到一个好的方法来研究你的问题。如热分析动力学研究,要从诸多的热分析动力学方法中选择、修改或建立新的动力学方程并非是件容易的事。实验、选择和修改动力学方程常常耗费几个月或更长的时间。/pp  1.1.3高分子物理近代研究方法/pp  选择正如人要走路,面对多条路,走哪条路?如何走这条路?便是你的选择了。科学研究亦如此。“高分子物理近代研究方法”是一本如何选择科学研究方法进行高分子物理研究的参考资料。/pp  “高分子物理近代研究方法”由高分子物理和近代研究方法二个词复合组成。“高分子物理”的研究内容是高分子的结构、高分子材料的性能和分子运动的统计学 近代研究方法有高分子光谱及波谱分析、X射线分析、高聚物热分析、高聚物显微分析。人们选择近代研究方法研究高分子物理中的诸多问题。选择过程是属于人的行为活动,需要宽厚、交叉的基础知识和精深的专业知识,而且要有丰富的实践活动。由具有高分子物理背景和科学分析仪器背景的复合型人才担当高聚物结构(性能)的表征和研究是最佳的选择。因为他们具有“多种学科在他头脑里汇合”的优势。/pp  strong1.2热分析方法选择/strong/pp  “热分析方法选择”是在第二届江苏省热分析技术应用与进展学术研讨会(2008年—扬州)上提出来的。是几十年的热分析实践中悟出的一个概念,是关于“热分析方法选择”问题的哲学思考。/pp  “热分析方法选择”有二层意思:/pp  第一层意思是:“选择”是一个哲学问题(概念),是一种思维方式。“热分析方法选择”是“选择”的哲学思想在科学研究中的应用实例。/pp  第二层意思是:“选择”是一种行为活动,贯穿于热分析方法选择和实验条件选择的全过程。/pp  1.2.1科学研究与方法的关系:/pp  每一项科学技术研究成果的取得,都是运用一定的研究方法的结果。而每一项重大的科学理论或技术突破,往往伴生新的研究方法的创立。方法的创立来源于实践,反过来又指导科学技术研究实践活动。/pp  科学研究是一个艰苦的探索过程,没有行之有效的方法,就无法达到研究的目的。方法的选择和应用是否适当是决定研究工作是否有成效的一项关键性因素。/pp  方法是指用于完成一个既定目标的具体技术和工具。要方法行之有效,就必须对方法进行有选择的、合理的运用。/pp  方法问题是解决实际问题不可逾越的现实问题,方法的选择很大程度上决定着研究的进展和效果。要针对具体问题,有目的地选择适用的方法。对于方法选择的准则依次是适用,高效简单、完美。在科学研究中选择热分析方法时可参考这个标准。/pp  1.2.2热分析仪器(方法)选择/pp  热分析方法是近代研究方法之一,它在科学研究中有极为广泛的应用。在对热分析方法已基本掌握的基础上,讨论这些方法的优缺点和适用范围, 择优选择。/pp  在科学研究中,“热分析方法选择”突出体现了“选择”的哲学思想的普适性。它包括二个内容:热分析方法(仪器)选择和实验方法(条件)建立。/pp  热分析方法包括 DSC、TG/DTA、TMA、DMA 和热分析+。各种方法有各自的特点和适用范围,同时它们之间又存在密切的联系。不同的热分析仪器(方法)应用在不同的研究领域。科研人员根据研究内容,选择合适的热分析方法,如下图。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201610/insimg/30e9b3e7-7048-4006-ae95-bae75680a739.jpg" title="1.png"//pp  上图表明:热分析应用是按转变、反应与热物性参数进行分类。这种分类/pp  方法具有很强的概括性。可以囊括各个学科领域的所有应用。热分析应用进一/pp  步细分,并选择相应的热分析方法。/pp  物理转变:/pp  涵盖结晶、晶型转变、汽化、升华、吸附、解吸附、吸水、居里点转变、玻璃化、液晶转变、热容转变等。/pp  化学反应:/pp  涵盖分解、氧化、还原、固态反应、燃烧、聚合、树脂固化、橡胶硫化、催化反应等。/pp  物质特性参数:/pp  比定压热容、纯度、膨胀系数、热导率等。/pp  热分析是一种解决问题的实用技术。“热分析怎样来解决你的问题?你的问题怎样用热分析来解决?”,你面临的就是选择热分析仪器(方法)来解决你的问题。选择先于实验,贯穿于科学研究的整个过程。根据研究内容,选择热分析仪器(方法)。选择活动的主体是科研人员,要体现主体的能动性,即体现科研人员的能力和特有的积极能动的自由本质力量。在选择过程中,科研人员对研究内容和热分析仪器(方法)进行分析、比较,然后做出合理有效的选择。针对具体问题,有目的地选择合适的热分析方法。/pp  列举几个实例:/pp  1. 玻璃化转变测量方法的选择/pp  高分子物理中有一个重要的转变—玻璃化转变。研究玻璃化转变有三种热分方法:DSC、TMA、DMA。哪种方法好呢?根据样品的特性,你要做出合理的选择。一般情况下,粉末样品通常选用DSC方法; 树脂固化样品通常选用TMA方法 成型制品通常选用DMA方法。/pp  DSC、TMA、DMA测量玻璃化转变的方法原理及灵敏度不同,如下表:/pp  DSC:检测的物理量是比热容 Cp 比热容变化约30%/pp  TMA:检测的物理量是膨胀系数 α 膨胀系数增加多至300%/pp  DMA:检测的物理量是模量 E 模量变化高达3个数量级/pp  由上表可知:仪器灵敏度DSC TMA DMA。 测量高聚物的玻璃化转变,DSC方法制样方便。但玻璃化转变的信号很微弱时,那么就要改为选用TMA、DMA方法。封装材料使用的环氧树脂,通常选用TMA测定固化产物的玻璃化转变温度Tg和△Tg。/pp  2. 高聚物次级转变的热分析方法选择/pp  为什么要选择DMA方法来研究次级转变呢?/pp  从被选择的客体及其特性说起。被选择的客体是DMA方法和次级转变。/pp  用DSC方法测量高聚物的热性能,能够检测到高聚物的Tg,但检测不到高聚物的次级转变Tβ。因而研究工作就在玻璃化转变层面戛然而止。仅仅测量玻璃化转变满足不了材料力学性能研究的需要。/pp  DMA方法研究高聚物在交变应力作用下的力学状态和热转变。非晶高聚物力学性质随温度变化,它的力学状态是玻璃态、玻璃化转变区、高弹态及黏流态;发生的转变有次级转变、玻璃化转变、流动转变。DMA方法方便地测试到高聚物的次级转变、玻璃化转变、流动转变,因此用DMA方法研究次级转变打破了高聚物研究止步于玻璃化转变的现状。/pp  高聚物发生的次级转变和玻璃化转变都是松弛过程。玻璃化转变是高聚物中链段由冻结到自由运动的可逆转变。次级转变是高聚物中小尺寸运动单元由冻结到自由运动的可逆转变。从材料结构、分子运动角度进行逻辑推理,潜意识感到次级转变和玻璃转变存在一定的关联性。但高分子物理和研究报告中,很少有人提及次级转变和玻璃转变的关联性,故只能淡墨轻描。选择DMA方法测试次级转变、玻璃化转变及其关联性就有它的现实价值。DMA方法测量高分子材料的玻璃化转变和次级转变,获得与材料的结构、分子运动、加工与应用有关的特征参数。因而在评价材料的耐热性与耐寒性、共混高聚物的相容性、树脂-化剂体系的固化过程、复合材料中的界面特性和高分子的运动机理等方面具有非常重要的实用与理论意义。研究高聚物次级转变和玻璃化转变都很重要,都是不容忽视的。选择DMA方法研究高聚物的玻璃化转变、次级转变和Tβ-Tg是一个富有创造性的想象力。/pp  高聚物在玻璃化温度以下,链段运动是冻结的,但更小的运动单元仍然可以发生运动,出现多个次级转变。高聚物次级转变之一是Tβ,它是一个非常有用的参数:它表征材料韧-脆转变,是材料的脆化温度和低温使用的极限温度;Tβ-Tg是高聚物发生物理老化的温度区间;β转变时力学内耗峰tanδ值与材料的冲击强度有对应关系;Tβ-Tg是屈服冷拉的温度区间,是加工工艺的必须控制的参数之一。/pp  DMA是利用分子运动由局部原子振动变为区域的链段运动及更小的运动单元的运动引起高聚物的黏弹性大幅变化的原理测量高聚物的热转变。DMA方法的灵敏度高,它不仅可测定玻璃化转变温度Tg,还可测定次级转变温度Tβ。图中蓝颜色框中的tanδ即为高聚物的次级转变温度Tβ。均相非晶态高聚物的/pp  DMA曲线如图所示。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201610/insimg/fe1a822b-e30b-4dce-a087-c79623b71406.jpg" title="2.jpg"//pp style="text-align: center "strong均相非晶态高聚物的DMA曲线/strong/pp  3. 物理老化和化学老化研究的热分析方法选择/pp  高聚物在使用过程中,会发生化学老化、物理老化和光老化。它们发生在不同的温度区间,测定这些特征温度是必须的。/pp  化学老化通常发生在Tg以上,采用DSC、TMA、DMA方法测定得到玻璃化转变温度Tg。/pp  物理老化通常发生在Tβ-Tg之间,采用DSC、TMA、DMA方法测定得到玻璃化转变温度Tg。选择DMA方法测量得到次级转变温度Tβ。/pp  膜的物理老化研究选择调制DSC和TMA、DMA方法。膜的调制DSC曲线和应力-温度曲线如图所示:/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201610/insimg/1209b375-4e9a-4bcc-b5db-4ec484081cc2.jpg" title="3.jpg"//pp style="text-align: center "strong分子链残留内应力和热焓松弛的MDSC曲线/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201610/insimg/bc98072a-f72a-4853-a5b2-1e02ad87eb7d.jpg" title="4.jpg"//pp style="text-align: center "strong  膜的物理老化涂层的应力-温度曲线/strong/pp style="text-align: center "strong  未物理老化涂层A/strong/pp style="text-align: center "strong  物理老化涂层B/strong/pp  涂层温度低于Tg时,发生物理老化。由于物理老化涂层的应力对温度的依赖性,用Tg曲线区域内的极小值表征(图中B线2点处),其幅度的大小与物理老化程度有关。物理老化影响材料的机械、热和电性能。一般来说,弹性模量和硬度随着物理老化而增大,而应力松弛速率变化使玻璃态的膨胀性降低。/pp  光老化选择光化学反应量热仪PDC方法。PDC的结构示意图如下:/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201610/insimg/d33624e5-302b-4758-a971-9a1d491bff47.jpg" title="5 (2).jpg"//pp style="text-align: center "  strongPDC的结构示意图 光化学反应量热仪PDC/strong/pp  光化学反应量热仪PDC的原理:是将不同波长、不同照射强度下的紫外光照射在试样上,测量热效应。它既可进行光固化实验,也可以进行高聚物的光老化研究。/pp  4. 选用多种热分析方法,全面表征高聚物的热性能。/pp  为了全面表征高聚物的热性能,“全选”不失为一种很好的选择。就是选择DSC、TG、TMA、DMA方法,全面表征高聚物的热性能。/pp  成功的科学家往往把所需要的各种方法巧妙地结合起来综合运用。这也是常见的方法选择。如热分析与FTIR、GC/MS、MS联用。/pp  5. 绝热材料的热分析方法选择/pp  温石棉是导热性极差的绝热材料。/pp  温石棉中含有Mg(OH)2。Mg (OH)2脱水方程式如下:/pp style="text-align: center "  Mg(OH)2 → MgO + H2O↑-△H/pp  由方程式可知:Mg (OH)2脱水时,它既有重量损失,而且伴有能量吸收。因此Mg(OH)2含量可用TGA方法定量,也可以用DSC方法测定。/pp  由于温石棉导热性差,选用DSC方法,依吸热峰面积定量Mg(OH)2含量,误差较大。而选用TGA方法,TG曲线上显现的失重台阶就是氢氧化镁的脱水量。根据失重台阶计算Mg(OH)sub2/sub的含量,数据准确,重复性好。/pp  6. 标准试验方法/pp  鉴于热分析方法的结果受诸多实验因素的影响,为利于热分析的学术交流/pp  和相互间的数据比较,国际标准化组织就几种主要热分析方法及应用制定了一系列标准和规范。如差示扫描量热法(仪)的标准和规范、热重法的标准、热机械分析的标准、动态力学性能的标准。实验都要按标准和规范执行。如玻璃化温度测定、熔融-结晶过程测量、比热容测定、氧化诱导期测定、结晶动力学测定、分解温度和分解速率测定、分解动力学测定、线性膨胀系数测定、针入度测定、模量、损耗因子、应力-应变曲线等。/pp  研究材料和制造产品时,有相应的国际标准、国家标准、行业标准,产品标准。按标准试验方法进行实验是一种强制性的选择。如封装材料T260/T288/T3O0(Time to Delaminate)热分层时间或称“爆板时间”测定必须按规定的标准方法进行。/pp  借鉴热分析文献综述中提及的热分析方法和实验方法也是一种选择。/pp  开发新的热分析方法和实验方法,适应研究的需要。/pp  7. 改造已有的方法以适应解决实际问题的需要/pp  外加电场、拱形铜片、夹具组合等DMA实验是夹具适应性改造的实例。/pp  外加电场的DMA实验/pp  外加电场:将外加电场加在样品两端,测定试样在外加电场的条件下,实时原位研究纳米复合材料的电刺激--形状记忆效应。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201610/insimg/a874a62b-fbcd-4369-826c-51f93a236e14.jpg" title="6.jpg"//pp style="text-align: center "strong拱形铜片的应变—应力曲线测试/strong/pp  选用压缩夹具。样品嵌在自制的限止长度变化的试样固定器上,整体置放在下探头。上探头临界接触试样的弧形部位,如图所示。/pp  采用应力控制模式,测定应力 —应变曲线。就得到了客户要求的规定形变量下的应力值。它是挠度测定的反过程。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201610/insimg/6567bd82-1dbb-4380-9fdf-8ae80e26e752.jpg" title="7.jpg"//pp style="text-align: center "strong夹具组合 —“蹦床夹具”实验/strong/pp  标准夹具组合使用:上夹具用压缩夹具,下夹具用双悬臂夹具。/pp  用下夹具夹持薄膜试样。薄膜试样上固定放置一个直径6mm的氧化锆圆柱体。然后将上夹具(压缩夹具)压在氧化锆圆柱体上。/pp  循环加载/下载应力,进行应力—应变循环实验。/pp  测定试样蹦床落点的力学性能。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201610/insimg/96453279-d8d2-424c-b8af-b3ea6b5d214e.jpg" title="8.jpg"//pp style="text-align: center "strongDMA模拟蹦床实验示图/strong/pp  8. 移植方法/pp  移植方法是当前科学方法发展的重要方面。移植包括科学概念、原理、方/pp  法以及技术手段等,从一个领域移植到另一个领域,或科学方法相互渗透和转移,多种方法形成一个新的方法。移植方法是科学整体化趋势的表现之一。热重/差热分析-固相微萃取-气相色谱-质谱联用系统是移植方法的实例。/pp  固相微萃取(SPME)是一种广泛使用的集萃取、浓缩、解吸、进样于一体的样品前处理新技术。将其移植到“热重/差热分析--气相色谱-质谱联用系统”中,即将固相微萃取(SPME)接入到“热重/差热分析--气相色谱-质谱联用系统”中去,改造成“热重/差热分析-固相微萃取-气相色谱-质谱联用系统。” 实验时划分温度段取样,解决逸出气取样问题,该系统已应用于原儿茶醛热解行为的研究。/pp  1.2.3选择实验条件,建立实验方法/pp  热分析实验结果常常依赖于实验条件,因此根据样品的特点选择实验条件,建立试验方法。strong见下图。/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201610/insimg/55058ec9-039f-4514-a5b4-52594968ae1a.jpg" title="9.jpg"//pp  列举几个实例:/pp  1. 含能材料的热分析方法和试验方法的选择/pp  热性能是含能材料的非常重要的性能之一,热分析能全面地表征含能材料的热性能,它在含能材料研究中得到了广泛的应用。由于含能材料分解过程的复杂性,要遵循“选择先于实验”的原则,切忌拿到一个含能材料的样品,随手称取10mg样品,冒失地进行TG实验或DSC实验。这将可能发生爆炸,损坏仪器和造成人员伤害。/pp  含能材料的热分析实验前,你必须先了解含能材料的分解特性和爆炸特性,谨慎地选择实验条件。试样量是致关重要的,因含能材料分解时放热量大,特别是有强烈自加热的分解过程。为防止峰的扭曲,试样量应尽量少,如0.05-0.3mg。然后谨慎地进行TG实验。如选择DSC方法,实验时要防止试样溢出,污染传感器。含能材料的TG/DTA曲线和DSC曲线如图所示:/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201610/insimg/6ea118da-ce02-4330-ae46-1e021cd8c1c1.jpg" title="10.jpg"//pp style="text-align: center "  strong含能材料的TG/DTA曲线 含能材料的DSC曲线/strong/pp  含能材料的TG/DTA曲线上的失重和放热峰呈歪斜型,是强放热造成的扭曲。样品量减少到0.3mg以下,峰型趋于正常。/pp  2. 聚丙烯玻璃化温度测定/pp  选择是目的性很强的实践行为。按选定的热分析方法和实验条件进行热分析实验,常常是一次或多次“试错”的选择过程。当实验结果达不到主体的要求时,可选择另一种热分析方法或更改实验条件,再次进行实验。多次试错,直至你得到了满足需要的结果。例如选择DSC方法测定聚丙烯玻璃化温度。升温速率选用10℃/min时,弱小的热效应难以被发现,DSC曲线上未见玻璃化转变峰。随着升温速率的提高,仪器灵敏度大大提高, 当升温速率达到150℃/min时,其玻璃化转变过程中的台阶状变化变得明显strong,/strong如图所示。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201610/insimg/17f85e3d-9bde-4dce-ba00-bdb474182035.jpg" title="11.png"//pp  3. 选择真空或加压条件解决热分析峰的分离问题/pp  热分析峰的分离问题常常是通过改变实验条件来解决的。例如塑料中增塑剂的挥发和塑料分解,在常压条件下,两种效应可能在相同的温度区间发生。而减压条件下,塑料中添加的增塑剂在塑料分解之前挥发,那么实验就可选择在真空条件下进行。多种热分析仪器可在真空条件下进行实验。/pp  如果在常压下发生两个重叠的化学反应,其中一个反应可能受压力升高的影响比另一个反应大。在这种情况下,可以选择压力DSC将两个反应进行分离。例如有机物的分解温度随惰性气体压力的增大而提高。/pp  4. 选择“强化影响因素”的实验条件/pp  有多种因素影响热分析的测量结果。可以使用简化、纯化、强化实验影响因素的方法,加速现象的进程。当然它与在自然条件下获得的结果是有差别的。可进行科学、合理的补偿和修改。在纯氧条件下进行氧化诱导期测定,是强化实验影响因素的实例之一。/pp  1.2.4热分析方法的取代和重新选择/pp  热分析方法随研究“需要”而“变”。物质热性能研究的深入,促进热分析方法的发展。热分析方法的发展,又促使研究工作顺利进行。/pp  批判性思维是以逻辑思维为基础。以一种批判、分析和评价的方式思考热分析方法的选择。被选择的热分析方法不是凝固不变的,而是随着研究实践出相应的改变或重新选择。/pp  “问题-方法-标准”的思维模式具有普适性。研究不同的问题选择不同的热分析方法,探索问题的本质和规律。对方法规范化的表述可制订为标准。制订的标准也是不断修订。/pp  实例1:选择热分析方法测定药物熔点/pp  热分析方法介入药物熔点测定。选择热分析方法测定药物熔点,取代毛细管法,已成趋势。/pp  在药品检验中,药物的熔点是鉴别药物真伪和衡量质量优劣的重要指标。药物熔点通常是用经典的毛细管法测定,人为视觉误差大,初熔点难以判别。2015中国药典推荐热分析方法取代毛细管法。/pp  选择DSC或DTA方法测量药品熔融的全过程,可提供准确的熔化温度,熔程、熔融焓及多晶型、纯度等信息。对那些熔融伴随分解、熔距较长,用毛细管法测定较困难的样品,选择热分析方法则能取得较理想的结果。选择几种热分析方法如DSC与TGA相结合的方法可给出更准确地判断。/pp  实例2:热分析方法自身在发展,方法选择也在演变。/pp  热重法是热分析技术中发明最早的。常常选择TG研究高聚物的热分解。随着TG技术的发展,新的功能不断出现,研究内容也不断深化。选择的TG方法也随科学研究的深化而演变。/pp  TG方法的演变,促使高聚物热分解的研究不断深化,如下表:/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201610/insimg/f1f85a2e-ad5d-413f-abfe-9890dfc34bff.jpg" title="12.jpg"//pp  表中提及了观察系统。观察系统是热分析的新功能,引入图形思维概念。热分/pp  析实验同时得到热分析曲线和形貌图像。对热分析曲线和观察到的形貌图像同/pp  步进行解析,追溯热变化的物理-化学过程。/pp  1.2.5方法选择中的创造性思维和批判性思维/pp  创造性思维是能引发新的和改进解决问题方法的思维方式。创造性思维引发新观念的产生,批判性思维是对所提供的解决问题的方式进行检验,以保证其有效性的思维方式。批判性思维包含了几个核心要素:解读、分析、评价、推理等。在方法选择中,要批判性地思考热分析方法问题。/pp  热分析方法选择过程中,要求创造性思维和批判性思维平衡发展。创造性思/pp  维和批判性思维将推动热分析方法和仪器的发展。/pp  实例1:骤冷PET初始结晶度测定/pp  选择传统DSC测定骤冷PET的初始结晶度。DSC曲线表明:通过熔融焓与结晶焓的焓值之差计算得到初始结晶度,热焓值之差为50.77-36.59=14.18J/g,表明它是部分结晶高聚物。而广角X射线衍射测定的结论:骤冷PET是无定形,与DSC结果相矛盾。这个矛盾逼迫科研人员以一种批判、分析和评价的方式去思考。科研人员凭借辨析和判断能力,判明数据真伪。/pp  温度调制DSC方法的创新思维是对传统DSC方法局限性的批判。温度调制DSC选择了一种特殊的升温方式:在一般线性加热或冷却的基础上,叠加了一个正弦的加热速率,这是创新;以基础升温的慢的升温速率来改善分辨率,并以瞬时快速升温速率提高灵敏度,这是对升温速率影响分辨率与灵敏度规则的遵循。从而使调制DSC将高分辨率与高灵敏度巧妙地结合在一起,实现了在同一个实验中既有高的灵敏度,又有高的分辨率。温度调制DSC既有创造性,创造性中又包括对规则遵循。温度调制DSC是对规则遵循中孕育创造性的范例/pp  创新,就是选择方法,创造新的可能性。温度调制DSC使可逆峰与不可逆峰的分离成为可能。温度调制DSC利用傅里叶变换的叠加法,得到可逆热流和不可逆热流,可逆峰与和不可逆峰被区分开来,从而显著提高微弱转变、多相转变和定量测定结晶度的可信度。选择温度调制DSC ( MTDSC )方法测定骤冷PET的初始结晶度。如图所示:/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201610/insimg/bd043b05-4380-4e3a-8a5a-c8de6e507766.jpg" title="13.jpg"//pp  温度调制DSC曲线显示:骤冷PET初始结晶焓值由冷结晶焓与熔融焓之差得到,其值为134.3-134.6=-0.3 J/g,表明骤冷PET初始结晶度极低,基本上为无定形形态。温度调制DSC的实验结果和广角X射线衍射测定的结果相符合。/pp  实例2:油品氧化诱导期测定/pp  常压下测定油品的氧化诱导期,由于油品蒸(挥)发,导致数据波动。基于高压能延迟挥发。创造性思维引发新观念的产生,高压DSC仪器出现了。人们放弃常压下测定油品的氧化诱导期的方法,而选择高压DSC测定油品的氧化诱导期,并编制了油品的氧化诱导期测定的相关标准。/pp  strong1.3“热分析方法选择”的编辑/strong/pp  全球无数台的热分析仪器每天都在运行,专业人员实时解析由实验得到的热分析曲线,并撰写成成千上万篇的研究报告发表在科学杂志上。这是科学研究中运用热分析方法的成果积累和沉淀。整理、编辑这些对科学有价值的资料,进而建立“热分析方法选择”的数据库和检索系统是人们的期盼。编写“热分析方法选用实例”是一项聚沙成塔的工作,编辑工作只有起点没有终点。/pp  “热分析方法选择”表格可以由实验室(个人)编辑。“热分析方法选择”的数据库和检索系统,必须由图书馆、出版社和专业技术学会编辑。/pp  1.3.1实验室编辑“热分析方法选用”/pp  热分析的专业工作者和科研人员,每天都在选择热分析方法,设计试验方法,进行大量的热分析实验。积累的资料如淙淙的小溪,常流不断,常流常新。经常翻一翻、查一查积攒下的实验资料,从自己的实验实践中,寻找研究内容和热分析方法的对应性,有助于今后热分析方法选择。将你的热分析实践活动用表格记录下来,成为自己编写的“热分析方法选用”的实例,供自己查用。/pp  “热分析方法选用实例”示意如表1:/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201610/insimg/8f3c3f0a-65cc-4c71-8dd5-e22d63225641.jpg" title="14.jpg"//pp  每个实验室都可以绘制一张“热分析方法选择”实例的表格。天天填写新的实例,就像每天记日记一样,持之以恒。当表格内储存量足够丰富时,就成了个人的数据库,可把它当作个人的手册查询。当你拿到一个样品或欲进行一项科学研究时,你可以从“热分析方法选择”实例的表格中检索到你所需要的热分析方法和实验条件。/pp  某实验室绘制的“热分析方法选用”实例的表格,如表2示例。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201610/insimg/b92eb8d6-f844-424f-b9cd-fe4b33fa3934.jpg" title="15.jpg"//pp  “热分析方法选择”和“热分析应用”是孪生的文本。“热分析方法选用”和“热分析应用”的内容是互通的。编辑“热分析应用”的表格或文本,与“热分析方法选择”相对应。/pp style="text-align: center "  strong表三 热分析应用的文本格式/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201610/insimg/0c1dab46-ea77-47b9-8e36-0e674fbdabb1.jpg" title="16.jpg"//pp  每个实验室编辑、制作“热分析方法选择”表格,各具特色,绽放选择之美。/pp  1.3.2“热分析方法选择”的检索系统建立/pp  热分析主要学术刊物与著作有热分析杂志、热化学学报、热分析文摘、热分析文献综述及刘振海等人的学术著作和热分析国际会议和国内的热分析专业会议的论文集。在网上和文库可搜索到更多的选择热分析方法进行科学研究的科学论文。按美国科学信息研究所的科学网站统计,每年仅就报道DSC一种技术用于结晶过程的论文就超过1100篇。/pp  以“热分析文献综述”为例。“热分析文献综述”是从二年间发表的几千篇热分析文献中,收录其中的200篇。“热分析综述”涵盖包括热分析方法和校准、热力学、动力学、以及热分析在无机物、聚合物、含能材料药物、生物化学和生物学方面的应用。“热分析文献综述”既阐述了科学研究的内容,也涉及热分析方法的选择。/pp  文献综述和科技论文的基本内容是:谁,研究了什么问题、选择了什么方法、得到了什么结论。将热分析文献综述和科技论文的文体转换为以“研究内容”和“热分析方法选择”为关键词的文本形式,就成为“热分析方法选用”的文本系统,如表四示例。/pp style="text-align: center "  strong表四 研究报告的文本转换/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201610/insimg/e806a669-89d1-4099-9c64-5cb3e577b9c1.jpg" title="17.jpg"//pp  “热分析方法选用”索引分类,可以按材料分类;也可以按物理转变、化学反应、热物性参数测定分类;或者按时间顺序排列。编辑数据库和检索系统的意义是能够满足研究方法选择的需要,根据研究内容,快速地选择到相应的热分析方法。/pp  “热分析方法选择”数据库和检索系统的编辑非个人能力所能担当。应由自然科学资金资助,委托图书馆、档案馆、出版社和热分析专业学会进行。/pp  1.3.3选择云端中“热分析”那朵云/pp  在当今大数据时代里,云端飘浮朵朵云彩,我选择“热分析”那朵。利用云端的热分析资料,对热分析数据进行计算、解析,实现它的科学价值。/pp  耄耋之年仰望科学的天空,浏览“云数据”,好似天真的玩童仰望令人神往的宇宙星空一样,托腮观测无边无界的边际,享受浩瀚之美!/p
  • 耐驰热分析仪器高级操作与应用技巧培训通知
    耐驰公司将于2006年开始,定期举办热分析仪器高级操作与应用技巧培训。培训由上海应用实验室负责, 内容包括最常用的热分析技术和仪器: DSC、TG、STA、DIL、LFA、DMA、热分析-质谱联用等内容详情请登录我们的网站www.ngb-netzsch.com.cn

热分析仪器相关的方案

热分析仪器相关的资料

热分析仪器相关的论坛

  • 【讨论】国产热分析仪器与进口热分析仪器的异同点

    国产仪器总是给人以傻大黑粗的印象,就热分析仪器而言,其实基本功能差不多,很多单位也都在使用,或同时使用国产和进口热分析仪器,国内企业的综合实力确实与国外企业差距较大,就竞争力来说,根本不在同一档次上,但是,难道今后就没有国产仪器了吗?请朋友们说说国产热分析仪器在产品技术和服务上与进口仪器的差距,如何改进,谢谢了!

  • 热分析仪器比较

    我们想购买一台热分析仪器主要用于金属和陶瓷等无机材料的热分析,哪个厂家的仪器比较好呢.请帮忙!

热分析仪器相关的耗材

  • 热分析仪器专用铝坩埚
    佳航热分析耗材,各种规格坩埚.热分析仪器专用氧化铝坩埚
  • 美国TA热分析仪器专用 30ul 可重复使用 高压坩埚 专用 镀金 纯铜 防爆片
    坩埚产品介绍: 30 μl耐高压不锈钢坩埚的结构相对轻且平坦,产生的温度梯度较小。能得到较好的DSC信号。坩埚上的螺纹和具有精确扭矩的密封工具确保坩埚能够简单且安全的密封。测试之后,可将坩埚打开和清洁,每次使用新的镀金铜质密封圈,可以重复使用坩埚10~20次。 30ul不锈钢坩埚已经证实在安全研究领域非常有效。每个坩埚只能使用一次。 最大承受压力是15MPa。 最高耐受温度为640℃。坩埚盖用肘杆式压机用约1吨的压力压入坩埚,从而使防爆片将坩埚完全密封。一埚一盖一密封圈为一套,25套/盒。 最大承受压力为15Mpa。 最高耐受温度为750℃。用于30 μl耐高压不锈钢坩埚/30 μl耐高压镀金不锈钢坩埚。价格为每片单价,60片/盒。坩埚产品参数:货号适用配套设备品种品类规格100001梅特勒热分析仪器镀金/不锈钢高压坩埚20ul100002梅特勒热分析仪器镀金/不锈钢高压坩埚25ul100003梅特勒热分析仪器镀金/不锈钢高压坩埚30ul100004梅特勒热分析仪器镀金/纯铜高压坩埚30ul100005梅特勒热分析仪器镀金/不锈钢高压坩埚40ul
  • 梅特勒-托利多仪器热分析坩埚
    材 质:99.5%高纯氧化铝规格型号:XCGG-8045尺 寸:¢8.0X4.5,壁厚:0.5mm适用仪器:METTLER-TOLEDO热分析仪器热分析坩埚:本公司采用高纯氧化铝粉为原料,结合现代先进的烧成工艺, 专业生产热分析用氧化铝/氧化锆陶瓷小坩埚,确保产品使用中具有以下四大特点,很好地满足各类热分析实验的需要。  1.热传导性高:样品和坩埚间热量传递速度快, 以保证两者间存在着极小的温差, 温度分布均匀。  2.结构性能稳定:高纯度粉体配合精密控制的高温烧结工艺,形成致密,均匀的微观晶相结构,确保在使用过程中不出峰,与分析样品不易发生物理,化学反应。  3.超高温稳定性: 使用温度范围广,Z高工作温度可达到1750度。  4.重复利用率高:水洗或10%的盐酸洗涤,烘干,可反复多次加以利用,不影响实验结果。  配套仪器厂商  北京光学仪器厂、上海天平仪器厂、德国耐弛公司、法国SETARAM公司、美国TA公司、德国Linseis公司、梅特勒-托利多公司、日本岛津公司、日本精工  产品分为多个系列,各大系列产品长年备有现货,也可制做特殊尺寸异形小坩埚满足客户个性化需求。0.1:材料解决方案电绝缘,热膨胀,硬度,导热系数等。对于任何其他要求,我们建议将材料与加工各种材料的经验相匹配。0.2:支持产品开发从提供样品到批量生产,我们将为您提供服务服务,我们还可以提供有关设计,交货日期的建议,以使客户的产品更好。0.3:快速交货我们内部拥有各种各样的材料和工具,这使得我们能够快速加工并交付给您。0.4:质量保证XMCERA的技能是通过严格的质量保证来控制和建立的,基于 ISO9001:2015 ,我们承诺提供满足客户需求的产品。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制