当前位置: 仪器信息网 > 行业主题 > >

高温导热仪

仪器信息网高温导热仪专题为您提供2024年最新高温导热仪价格报价、厂家品牌的相关信息, 包括高温导热仪参数、型号等,不管是国产,还是进口品牌的高温导热仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合高温导热仪相关的耗材配件、试剂标物,还有高温导热仪相关的最新资讯、资料,以及高温导热仪相关的解决方案。

高温导热仪相关的资讯

  • 耐驰公司成功举办2006年度激光导热仪LFA用户会
    随着激光导热仪(LFA)在导热研究方面的逐步深入,其应用也越来越广泛。德国耐驰作为激光闪射法导热仪技术和制造的领先者,具有非常丰富的仪器操作和科研应用方面的经验。为了使用户更好地使用激光导热仪,德国耐驰公司在2006年9月21-22日在上海举办了LFA的用户会。此次会议,由耐驰中国技术支持主管曾智强博士主持,德国总部应用技术专家Blumm博士就材料导热性能测量的方法综述、激光导热仪的基本原理和激光导热方法的应用进展做了详尽细致的讲解。耐驰中国应用实验室应用专家徐梁先生做了关于激光导热仪的操作和数据处理方法的报告,共同分享德国总部及上海应用实验室多年来积累的应用经验,并和用户就使用仪器的技巧做了深入的探讨。另外,耐驰中国维修部詹宁经理介绍了激光导热仪的维护方法,以便用户能够更好的使用仪器。会议期间,与会人员表现出极大的热情,与德国及中国技术专家进行了热切而深入的交流,就激光导热仪原理、使用方法及技巧方面提出了多个富有见地的问题,专家们就这些问题进行了认真细致的解答。用户对此次会议给予了高度的评价,表示通过此次用户会,提高了激光导热仪的测试技巧,拓展了思路,尤其在利用激光导热仪测试不同形态样品导热系数的方法上给予了充分的肯定与赞赏。同时用户也对以后举办类似的用户会提出了建设性的意见。对于大家的建议,耐驰公司会积极采纳,并继续努力,在不久的将来,为大家提供更高水平的交流平台,增强交流与合作,将最新的热分析技术及仪器奉献给中国用户。详情请登录:www.netzsch.cn
  • 耐驰公司将举办激光闪射法导热仪LFA用户会
    在科学研究领域中,深入了解材料的热物理性能,从而优化最终产品的导热性能是非常重要的, 在过去的几十年里,激光闪射法已经发展成为最为广泛使用的导热测量技术。 随着近年来导热仪尤其是激光导热仪在市场的需求不断增大,耐驰作为激光闪射法导热仪技术和制造的领先者,其用户量在不断增加。 为了使用户更好的使用这种仪器,积累更多仪器操作和科研应用方面的经验,了解当今最新技术的发展, 德国耐驰仪器有限公司拟定于2006年9月21日(星期四)~22日(星期五)在上海举办激光闪射导热仪LFA用户会。届时,将由耐驰公司的德国专家和中国应用技术支持人员主讲。我们热忱欢迎各位光临讲座,有关日程和地点安排请登录:www.netzsch.cn
  • 耐驰公司激光导热仪高级用户培训会举办
    2009年12月3日,耐驰公司在上海硅酸盐研究所学术会议厅成功举办了“耐驰公司激光导热仪高级用户培训会”。来自上海、浙江和江苏的激光用户纷纷响应,复旦大学、上海交通大学、同济大学、华东理工大学、浙江大学的高校都专门派出代表参加,上海硅酸盐研究所、宝钢研究院和上海化工研究院的用户也百忙中抽出时间积极参与,与会代表50余人。  随着近几年材料的快速发展,材料导热系数的测量变得越来越重要,因此,激光导热仪的用户也得到快速增长。为了给客户提供全面、深入的技术支持,耐驰特邀激光学专家Dr.Blumm来上海举办此次高级用户会。会上,Dr.Blumm全面的讲解了激光导热仪的原理、仪器的校正方法、激光导热仪在薄的高导热材料方面的应用、激光导热在多层材料测试方面的技巧、激光导热在不均匀材料方面的测试应用,以及激光导热在一些特殊领域方面的应用等。     针对在使用过程中可能会遇到的技术问题,以及在实际操作过程中的各种技巧,Dr.Blumm都做了详细、全面的阐述,因此,参加会议的客户不但认真仔细的聆听,而且都纷纷做了笔记,并且在茶歇期间与Dr.Blumm进行了深入的沟通。此外,为了给中国的客户提供最切实的帮助,Dr.Blumm提供了大量德国实验室最新研究的各种材料的实验数据,给广大客户提供了非常有力的帮助。  会后大家都纷纷表示这次会议非常有效,完全是针对客户最迫切的需求提供的最切合实际的解决方案。也希望耐驰公司以后能经常举办此种类型的会议。耐驰公司每年都会在不同地区举办不同类型仪器的各种培训会,也希望广大用户能够抽出宝贵时间积极参与,我们会尽力为客户提供相互交流与学习的平台。  为了方便客户了解耐驰最新的培训安排,公司会将各种培训信息及时发布在公司网站,请广大客户可以随时登录耐驰公司的主页(www. netzsch.cn)随时查询。
  • 德国耐驰(NETZSCH)激光导热仪高级用户会
    近年来,随着材料科学领域的快速发展,深入了解材料的热物性能变得越来越重要,激光闪光法技术做为导热性能的测量方法,已经得到广泛的使用。德国耐驰公司作为全球一流的热物性仪器制造商,不仅提供性能优异的设备仪器,并致力于为您提供有效的技术保证和应用支持。  为了使用户能够更全面深入的了解激光闪光测量技术,耐驰公司将于12月1日和3日分别在 西安 和上海 举办专场激光导热技术高级研讨会,届时将由耐驰公司资深热物性专家Dr.Blumm向各位介绍激光闪光法导热仪的最新进展和应用技术, Dr.Blumm从事激光闪光导热仪研发和应用多年,积累了丰富的应用经验。在此,我们特邀您参加此研讨会,并相信一定会给您的工作带来意想不到的收获!  会议的具体日程安排如下:  西安研讨会:  时间:2009 年 12 月1 日 星期二  地点:西安骊苑大酒店二楼多功能厅 西安市劳动南路8号  上海研讨会:  时间:2009 年 12 月3 日 星期四  地点:上海硅酸盐研究所四号楼14层 上海长宁区定西路1295号  研讨会具体内容可以参见我们的邀请函。  如果您希望参加我们的研讨会,可以随时联系以下人员:  李静 电话:021-58663128-686, E-mail地址:jing.li@nsi.netzsch.cn  耐驰期待您的光临!
  • 335万!西安电子科技大学计划采购激光导热仪
    一、项目基本情况项目编号:0617-224121HZ0476(XDH21031D)项目名称:西安电子科技大学激光导热仪采购项目(XDH21031D)预算金额:335.0000000 万元(人民币)采购需求:激光导热仪采购,数量:1套。合同履行期限:合同生效后6个月本项目( 不接受 )联合体投标。二、申请人的资格要求:1.满足《中华人民共和国政府采购法》第二十二条规定;2.落实政府采购政策需满足的资格要求:不适用3.本项目的特定资格要求:除《机电产品国际竞争性招标文件(第一册)》要求投标人提供的证明文件外,投标人还必须提供:1)投标人加盖公章的营业执照复印件(适用于关境内投标人)或企业注册证明复印件(适用于关境外投标人)2)2.1投标人法定代表人授权书原件(适用于关境内投标人)或单位负责人授权书原件(适用于关境外投标人);2.2代理商投标,须具有投标产品制造商出具的授权书(原件),投标产品的授权链应完整、真实、有效;3)投标人银行开户许可证复印件(适用于关境内投标人)4)投标人开户银行在开标日前三个月内开具的资信证明原件或复印件5)投标人应当于招标文件载明的投标截止时间前在必联网(http://www.ebnew.com)或机电产品招标投标电子交易平台(http://www.chinabidding.com)进行成功注册和通过年检,并保证招标人或招标代理机构能够在网上选取投标人;注:境内投标人不含港澳台地区三、获取招标文件时间:2022年03月30日 至 2022年04月07日,每天上午8:30至11:30,下午13:30至16:30。(北京时间,法定节假日除外)地点:成长大厦10会议室(地址:中国陕西省西安市南二环西段58号)方式:需持单位介绍信及购买人身份证原件及复印件购买,招标文件每套售价¥500元或85美元,售后不退。发售联系人:刘星(029-89651830);招标文件了解和咨询地点:西安市南二环西段58号成长大厦11层1102售价:¥500.0 元,本公告包含的招标文件售价总和四、提交投标文件截止时间、开标时间和地点提交投标文件截止时间:2022年04月21日 09点30分(北京时间)开标时间:2022年04月21日 09点30分(北京时间)地点:南二环西段58号成长大厦10层会议室五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜/七、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:西安电子科技大学     地址:陕西省西安市长安区西沣路兴隆段266号        联系方式:赵老师029-81891893      2.采购代理机构信息名 称:西北(陕西)国际招标有限公司            地 址:陕西省西安市雁塔区南二环西段58号成长大厦10~14层联系方式:卓迪、宋鹏飞、张喆 029-89651851              3.项目联系方式项目联系人:卓迪、宋鹏飞 、张喆电 话:  029-89651851
  • 合肥热电集团有限公司120.00万元采购导热仪
    详细信息 合肥热电集团纳米孔二氧化硅气凝胶毡年度合格供应商 安徽省-合肥市-蜀山区 状态:公告 更新时间: 2024-01-05 招标文件: 附件1 附件2 附件3 合肥热电集团纳米孔二氧化硅气凝胶毡年度合格供应商1、2标段招标公告 1. 招标条件 1.1 项目名称:合肥热电集团纳米孔二氧化硅气凝胶毡年度合格供应商 1.2 项目审批、核准或备案机关名称:/ 1.3 批文名称及编号:/ 1.4 招标人:合肥热电集团有限公司 1.5 项目业主:合肥热电集团有限公司 1.6 资金来源:自筹 1.7 项目出资比例:100% 1.8 资金落实情况:已落实 2. 项目概况与招标范围 2.1 招标项目名称:合肥热电集团纳米孔二氧化硅气凝胶毡年度合格供应商 2.2 招标项目编号:2024BFFWZ00030 2.3 标段划分:本招标项目共划分2个标段。 2.4 招标项目标段编号:1标段招标项目编号:2024BFFWZ00030-1;2 标段招标项目编号:2024BFFWZ00030-2 2.5 招标项目地点:合肥市,招标人指定地点 2.6 招标项目规模:本项目招标采购的二氧化硅气凝胶主要用于高温蒸汽管道保温,中标人提供二氧化硅气凝胶,包含运输。 2.7 合同估算价:1标段:120万元;2标段:90万元 2.8 交货期:1、2标段:合同签订后,每批次接到招标人供货通知后10个日历天内送到指定地点(合肥市范围内)。合同期限为1年,考核达到续签标准的,经双方协商一致后可以续签1年,续签最多2次。满足或达到下列任一条件,招标人有权解除合同:(1)到达采购期截止日;(2)采购期内各标段中标人采购金额达到各标段概算。 2.9 交货地点:合肥市,招标人指定地点 2.10 招标范围:1、2标段:本项目招标采购的二氧化硅气凝胶主要用于高温蒸汽管道保温,中标人提供二氧化硅气凝胶,包含运输。 2.11 项目类别:与工程无关货物 2.12 其他:/ 3. 投标人资格要求 3.1 投标人应依法设立并具备承担本招标项目的如下条件: 3.1.1 投标人资质要求: (1)具备有效的营业执照; (2)投标人须为所投纳米孔二氧化硅气凝胶毡生产厂家; 3.1.2 投标人业绩要求:2021年1月1日以来(以合同签订时间为准),投标人具有纳米孔二氧化硅气凝胶毡供货业绩,且单个合同总金额不少于50万元; 3.1.3 财务要求:/ 3.1.4 信誉要求:投标人未被合肥市及其所辖县(市)、区(开发区)公共资源交易监督管理部门记不良行为记录的;或被记不良行为记录(以公布日期为准),但同时符合下列情形的: (1)开标日前(含当日)6个月内记分累计未满10分的; (2)开标日前(含当日)12个月内记分累计未满15分的; (3)开标日前(含当日)18个月内记分累计未满20分的; (4)开标日前(含当日)24个月内记分累计未满25分的。 3.1.5 本招标项目两个标段均不接受联合体投标。 3.2 投标人不得存在招标文件第二章投标人须知第1.4.3项、第1.4.4项规定的情形。 3.3 其他要求:投标人所投纳米孔二氧化硅气凝胶毡满足以下技术参数:导热系数(W/(m﹒K))≤0.021(25℃)、(W/(m﹒K))≤0.036(300℃)、(W/(m﹒K))≤0.072(500℃);最高使用温度(℃)≥500;燃烧性能A级不燃;密度(kg/m3)200±10;压缩回弹率≥90%;抗拉强度≥200kPa;憎水率≥98%;渣球含量无。投标人须提供封面具有CMA和CNAS标志的第三方检测机构出具的有效检测报告扫描件作为评审依据。 3.4 每个投标人最多允许投标2个标段,最多允许中标1个标段。 4. 招标文件的获取 4.1 获取时间:2024年01月06日00:00至2024年01月26日10:30。 4.2 获取方式: (1)本招标项目实行全流程电子化交易。 (2)潜在投标人可登录安徽合肥公共资源交易中心电子服务系统(以下简 称“电子服务系统”) 查阅招标文件, 如参与投标, 则须在本条第 4.1 款规定的 招标文件获取时间内通过安徽公共资源交易集团电子交易系统完成投标信息的填写。 (3)招标文件获取过程中有任何疑问,请在工作时间(9:00- 17 :30,节 假日休息)拨打技术支持热线(非项目咨询): 4009980000 。 项目咨询请拨打电话: 0551-66223272、66223831 4.3 招标文件价格:每套人民币0元整,招标文件售后不退 5. 投标文件的递交 投标文件递交的截止时间为2024年01月26日10时30分,投标人应在投标截止时间前通过安徽公共资源交易集团电子交易系统递交电子投标文件。 6. 资格审查方式 本招标项目采用资格后审方式进行资格审查。 7.评标办法 本招标项目评标办法采用综合评估法(一次平均)。(见招标文件第三章“评标办法”) 8. 开标时间及地点 8.1 开标时间:2024年01月26日10时30分 8.2 开标地点: 合肥市滨湖新区南京路2588号要素交易市场A区(徽州大道与南京路交口)2楼2号开标室 本招标项目采用“云上开标大厅”方式开标 9. 招标文件的异议、投诉 9.1 投标人或者其他利害关系人对招标文件有异议的,应当在规定时间通过电子交易系统在线提出或以其他书面形式提出。 9.2 投标人或者其他利害关系人对招标人、招标代理机构的答复不满意,或者招标人、招标代理机构未在规定时间内作出答复的,可以在规定时间内通过网上投诉系统或以其他书面形式向监管部门提出投诉。 9.3 受理异议的联系人和联系方式见招标公告11.1和11.2。 10. 发布公告的媒介 本次招标公告同时在安徽合肥公共资源交易中心网站、安徽省公共资源交易监管网、全国公共资源交易平台上发布。 11. 联系方式 11.1 招标人 招 标 人:合肥热电集团有限公司 地 址:合肥市蜀山区休宁路66号 邮 编:230000 联 系 人:凌工 电 话:0551-62622711 11.2 招标代理机构 招标代理机构:安徽公共资源交易集团项目管理有限公司 地 址:合肥市滨湖新区南京路2588号(徽州大道与南京路交口)六楼 邮 编:230000 联 系 人:张工 电 话:0551-66223272、66223831 11.3 电子交易系统 电子交易系统名称:安徽公共资源交易集团电子交易系统 电子交易系统电话:400 998 0000 11.4 电子服务系统 电子服务系统名称:安徽合肥公共资源交易中心电子服务系统 电子服务系统电话:0551-12345 11.5 公共资源交易监督管理部门 公共资源交易监督管理部门:合肥市公共资源交易监督管理局 地 址:合肥市滨湖区南京路2588号 电 话:0551-66223530、0551-66223546 12. 其他事项说明 投标人应合理安排招标文件获取时间,特别是网络速度慢的地区防止在系统关闭前网络拥堵无法操作。如果因计算机及网络故障造成无法完成招标文件获取,责任自负。 13. 投标保证金账户 标段简称:1标段 户名: 安徽合肥公共资源交易中心 账号: 185751461614 开户银行: 中国银行合肥庐阳支行 户名: 安徽合肥公共资源交易中心 账号: 1023701021001095993248645 开户银行: 徽商银行股份有限公司合肥蜀山支行 标段简称:2标段 户名: 安徽合肥公共资源交易中心 账号: 182752404522 开户银行: 中国银行合肥庐阳支行 户名: 安徽合肥公共资源交易中心 账号: 1023701021001095993248646 开户银行: 徽商银行股份有限公司合肥蜀山支行 附件: 安徽合肥公共资源交易中心网上投诉操作手册-投标人.pdf 招标文件正文.pdf 安徽公共资源交易集团电子交易系统网上异议操作手册—投标人.pdf × 扫码打开掌上仪信通App 查看联系方式 基本信息 关键内容:导热仪 开标时间:2024-01-26 10:30 预算金额:120.00万元 采购单位:合肥热电集团有限公司 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:安徽公共资源交易集团项目管理有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 合肥热电集团纳米孔二氧化硅气凝胶毡年度合格供应商 安徽省-合肥市-蜀山区 状态:公告 更新时间: 2024-01-05 招标文件: 附件1 附件2 附件3 合肥热电集团纳米孔二氧化硅气凝胶毡年度合格供应商1、2标段招标公告 1. 招标条件 1.1 项目名称:合肥热电集团纳米孔二氧化硅气凝胶毡年度合格供应商 1.2 项目审批、核准或备案机关名称:/ 1.3 批文名称及编号:/ 1.4 招标人:合肥热电集团有限公司 1.5 项目业主:合肥热电集团有限公司 1.6 资金来源:自筹 1.7 项目出资比例:100% 1.8 资金落实情况:已落实 2. 项目概况与招标范围 2.1 招标项目名称:合肥热电集团纳米孔二氧化硅气凝胶毡年度合格供应商 2.2 招标项目编号:2024BFFWZ00030 2.3 标段划分:本招标项目共划分2个标段。 2.4 招标项目标段编号:1标段招标项目编号:2024BFFWZ00030-1;2 标段招标项目编号:2024BFFWZ00030-2 2.5 招标项目地点:合肥市,招标人指定地点 2.6 招标项目规模:本项目招标采购的二氧化硅气凝胶主要用于高温蒸汽管道保温,中标人提供二氧化硅气凝胶,包含运输。 2.7 合同估算价:1标段:120万元;2标段:90万元 2.8 交货期:1、2标段:合同签订后,每批次接到招标人供货通知后10个日历天内送到指定地点(合肥市范围内)。合同期限为1年,考核达到续签标准的,经双方协商一致后可以续签1年,续签最多2次。满足或达到下列任一条件,招标人有权解除合同:(1)到达采购期截止日;(2)采购期内各标段中标人采购金额达到各标段概算。 2.9 交货地点:合肥市,招标人指定地点 2.10 招标范围:1、2标段:本项目招标采购的二氧化硅气凝胶主要用于高温蒸汽管道保温,中标人提供二氧化硅气凝胶,包含运输。 2.11 项目类别:与工程无关货物 2.12 其他:/ 3. 投标人资格要求 3.1 投标人应依法设立并具备承担本招标项目的如下条件: 3.1.1 投标人资质要求: (1)具备有效的营业执照; (2)投标人须为所投纳米孔二氧化硅气凝胶毡生产厂家; 3.1.2 投标人业绩要求:2021年1月1日以来(以合同签订时间为准),投标人具有纳米孔二氧化硅气凝胶毡供货业绩,且单个合同总金额不少于50万元; 3.1.3 财务要求:/ 3.1.4 信誉要求:投标人未被合肥市及其所辖县(市)、区(开发区)公共资源交易监督管理部门记不良行为记录的;或被记不良行为记录(以公布日期为准),但同时符合下列情形的: (1)开标日前(含当日)6个月内记分累计未满10分的; (2)开标日前(含当日)12个月内记分累计未满15分的; (3)开标日前(含当日)18个月内记分累计未满20分的; (4)开标日前(含当日)24个月内记分累计未满25分的。 3.1.5 本招标项目两个标段均不接受联合体投标。 3.2 投标人不得存在招标文件第二章投标人须知第1.4.3项、第1.4.4项规定的情形。 3.3 其他要求:投标人所投纳米孔二氧化硅气凝胶毡满足以下技术参数:导热系数(W/(m﹒K))≤0.021(25℃)、(W/(m﹒K))≤0.036(300℃)、(W/(m﹒K))≤0.072(500℃);最高使用温度(℃)≥500;燃烧性能A级不燃;密度(kg/m3)200±10;压缩回弹率≥90%;抗拉强度≥200kPa;憎水率≥98%;渣球含量无。投标人须提供封面具有CMA和CNAS标志的第三方检测机构出具的有效检测报告扫描件作为评审依据。 3.4 每个投标人最多允许投标2个标段,最多允许中标1个标段。 4. 招标文件的获取 4.1 获取时间:2024年01月06日00:00至2024年01月26日10:30。 4.2 获取方式: (1)本招标项目实行全流程电子化交易。 (2)潜在投标人可登录安徽合肥公共资源交易中心电子服务系统(以下简 称“电子服务系统”) 查阅招标文件, 如参与投标, 则须在本条第 4.1 款规定的 招标文件获取时间内通过安徽公共资源交易集团电子交易系统完成投标信息的填写。 (3)招标文件获取过程中有任何疑问,请在工作时间(9:00- 17 :30,节 假日休息)拨打技术支持热线(非项目咨询): 4009980000 。 项目咨询请拨打电话: 0551-66223272、66223831 4.3 招标文件价格:每套人民币0元整,招标文件售后不退 5. 投标文件的递交 投标文件递交的截止时间为2024年01月26日10时30分,投标人应在投标截止时间前通过安徽公共资源交易集团电子交易系统递交电子投标文件。 6. 资格审查方式 本招标项目采用资格后审方式进行资格审查。 7.评标办法 本招标项目评标办法采用综合评估法(一次平均)。(见招标文件第三章“评标办法”) 8. 开标时间及地点 8.1 开标时间:2024年01月26日10时30分 8.2 开标地点: 合肥市滨湖新区南京路2588号要素交易市场A区(徽州大道与南京路交口)2楼2号开标室 本招标项目采用“云上开标大厅”方式开标 9. 招标文件的异议、投诉 9.1 投标人或者其他利害关系人对招标文件有异议的,应当在规定时间通过电子交易系统在线提出或以其他书面形式提出。 9.2 投标人或者其他利害关系人对招标人、招标代理机构的答复不满意,或者招标人、招标代理机构未在规定时间内作出答复的,可以在规定时间内通过网上投诉系统或以其他书面形式向监管部门提出投诉。 9.3 受理异议的联系人和联系方式见招标公告11.1和11.2。 10. 发布公告的媒介 本次招标公告同时在安徽合肥公共资源交易中心网站、安徽省公共资源交易监管网、全国公共资源交易平台上发布。 11. 联系方式 11.1 招标人 招 标 人:合肥热电集团有限公司 地 址:合肥市蜀山区休宁路66号 邮 编:230000 联 系 人:凌工 电 话:0551-62622711 11.2 招标代理机构 招标代理机构:安徽公共资源交易集团项目管理有限公司 地 址:合肥市滨湖新区南京路2588号(徽州大道与南京路交口)六楼 邮 编:230000 联 系 人:张工 电 话:0551-66223272、66223831 11.3 电子交易系统 电子交易系统名称:安徽公共资源交易集团电子交易系统 电子交易系统电话:400 998 0000 11.4 电子服务系统 电子服务系统名称:安徽合肥公共资源交易中心电子服务系统 电子服务系统电话:0551-12345 11.5 公共资源交易监督管理部门 公共资源交易监督管理部门:合肥市公共资源交易监督管理局 地 址:合肥市滨湖区南京路2588号 电 话:0551-66223530、0551-66223546 12. 其他事项说明 投标人应合理安排招标文件获取时间,特别是网络速度慢的地区防止在系统关闭前网络拥堵无法操作。如果因计算机及网络故障造成无法完成招标文件获取,责任自负。 13. 投标保证金账户 标段简称:1标段 户名: 安徽合肥公共资源交易中心 账号: 185751461614 开户银行: 中国银行合肥庐阳支行 户名: 安徽合肥公共资源交易中心 账号: 1023701021001095993248645 开户银行: 徽商银行股份有限公司合肥蜀山支行 标段简称:2标段 户名: 安徽合肥公共资源交易中心 账号: 182752404522 开户银行: 中国银行合肥庐阳支行 户名: 安徽合肥公共资源交易中心 账号: 1023701021001095993248646 开户银行: 徽商银行股份有限公司合肥蜀山支行 附件: 安徽合肥公共资源交易中心网上投诉操作手册-投标人.pdf 招标文件正文.pdf 安徽公共资源交易集团电子交易系统网上异议操作手册—投标人.pdf
  • 湘潭大学采购南京大展DZDR-S 瞬态平板法导热仪
    导热仪能测什么?其实导热仪是一种测量不同材料导热系数的仪器。导热仪的应用广泛,其主要用于金属与合金、钻石、陶瓷、石墨与碳纤维、填充塑料、高分子材料等的测试。  这次采购南京大展的DZDR-S瞬态平板法导热仪是湘潭大学化工学院,为什么会选择这款瞬态平板法导热仪?其主要是因其具备的性能优势,而且测量速度快,对于样品的形状无特殊要求,只需平整,操作简单。  在仪器的安装调试现场,技术人员就这款DZDR-S瞬态平板法导热仪测试流程、数据分析、放置样品等实际操作步骤进行说明和培训,让其使用人员进行操作,对仪器进行熟悉,针对疑问进行解答。  DZDR-S瞬态平板法导热仪的性能特点:  1、测量范围:0.0001—300W/(m*K)。  2、测量时间快。测试时间5-160s左右可设置,能快速准确的测出导热系数,节约了大量的时间。  3、多个探头可供选择。探头上的数据采集使用了进口的数据采集芯片,该芯片的高分辨率,能使测试结果更加准确可靠。  4、测试样品类型广泛。仪器可用于块状固体、膏状固体、颗粒状固体、胶体、液体、粉末、涂层、薄膜、保温材料等热物性参数的测定。  5、双向操作,可通过软件直接计算出导热系数。主机的控制系统使用了ARM微处理器,运算速度比传统的微处理器快,提高了系统的分析处理能力。  6、彩色触摸屏显示,显示清晰度高,操作便捷。  DZDR-S瞬态平板法导热仪是南京大展仪器新推出一款设备,与其他测试方法的导热仪对比,其具备的优势明显,而且测量速度快,操作简单,并且准确度高。
  • 130万!中国科学院过程工程研究所计划采购激光闪射导热仪
    一、项目基本情况项目编号:OITC-G220571961项目名称:中国科学院过程工程研究所激光闪射导热仪采购项目预算金额:130.0000000 万元(人民币)最高限价(如有):130.0000000 万元(人民币)采购需求:1、采购项目的名称、数量:包号货物名称数量(台/套)是否允许采购进口产品采购预算(万元人民币)1激光闪射导热仪1是130投标人可对其中一个包或多个包进行投标,须以包为单位对包中全部内容进行投标,不得拆分,评标、授标以包为单位。合同履行期限:详见采购需求本项目( 不接受 )联合体投标。二、申请人的资格要求:1.满足《中华人民共和国政府采购法》第二十二条规定;2.落实政府采购政策需满足的资格要求:本项目不属于专门面向中小企业采购的项目。依据工信部联企业【2011】300号文件,采购标的对应的中小企业划分标准所属行业为:工业3.本项目的特定资格要求:(1)在中华人民共和国境内依法注册的,具有独立承担民事责任能力,遵守国家法律法规,具有良好信誉,具有履行合同能力和良好的履行合同的记录,具有良好资金、财务状况的企事业法人、其他组织或者自然人;(2)为本项目提供整体设计、规范编制或者项目管理、监理、检测等服务的供应商,不得参加本项目投标;(3)投标单位负责人为同一人或者存在直接控股、管理关系的不同供应商,不得参加同一合同项下的政府采购活动;(4)按本投标邀请的规定获取招标文件;(5)投标人不得为列入失信被执行人、重大税收违法案件当事人名单、政府采购严重违法失信行为记录名单的供应商。三、获取招标文件时间:2022年11月30日 至 2022年12月07日,每天上午9:00至11:00,下午13:00至17:00。(北京时间,法定节假日除外)地点:http://www.oitccas.com/方式:登录东方招标平台http://www.oitccas.com/注册并购买。售价:¥600.0 元,本公告包含的招标文件售价总和四、提交投标文件截止时间、开标时间和地点提交投标文件截止时间:2022年12月21日 09点30分(北京时间)开标时间:2022年12月21日 09点30分(北京时间)地点:北京市海淀区西三环北路甲2号院科技园6号楼13层第一会议室五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜1、投标文件递交地点:北京市海淀区西三环北路甲2号院科技园6号楼13层第一会议室2、招标文件采用网上电子发售购买方式:1)登陆“东方招标”平台(http://www.oitccas.com/),点击“获取采购文件”链接图标,或直接输入访问地址(http://www.oitccas.com/pages/sign_in.html?page=mine)完成投标人注册手续(免费),然后登陆系统寻找有意向参与的项目,已注册的投标人无需重新注册。招标文件售价:每包人民币600 元。如决定购买招标文件,请完成标书款缴费及标书下载手续。。2)投标人可以电汇的形式支付标书款(应以公司名义汇款至下述指定账号)。开户名称:东方国际招标有限责任公司开户行:招商银行北京西三环支行账号:8620816577100013)投标人应在平台上填写开票信息。在投标人足额缴纳标书款后,标书款电子发票将发送至投标人在平台上登记的电子邮箱,投标人自行下载打印。3、以电汇方式购买招标文件和递交投标保证金的,须在电汇凭据附言栏中写明招标编号及用途(如未标明招标编号,有可能导致投标无效)。4、采购项目需要落实的政府采购政策:(1)政府采购促进中小企业发展(2)政府采购支持监狱企业发展(3)政府采购促进残疾人就业(4)政府采购鼓励采购节能环保产品七、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:中国科学院过程工程研究所地址:北京市海淀区中关村北二街1号联系方式:010-825448402.采购代理机构信息名称:东方国际招标有限责任公司地址:北京市海淀区西三环北路甲2号院科技园6号楼13层01室联系方式:曹山、窦志超、王琪 010-682905293.项目联系方式项目联系人:曹山、窦志超、王琪电话:010-68290529
  • 耐驰仪器公司收购德国 Taurus 仪器公司 拓展防火测试仪、导热仪等产品线
    p  耐驰仪器公司宣布拓展了防火测试系统、导热仪和传热系数(U值)测试仪(热箱)等产品线。/pp  德国TAURUS仪器股份公司(现为NETZSCH TAURUS® 仪器股份有限公司)与耐驰分析和测试业务部门的合并是两家公司长期业务联系的结果。在导热仪领域,两家公司服务于同一市场,但设备和规格不同。随着防火测试产品线的增加,耐驰现在进入了一个全新的市场。/pp  在导热领域,耐驰现在可以提供三个额外的带保护热板(GHP)的设备。带保护加热管的管道测试仪是耐驰产品线中的新产品。使用热箱系统,可以测量大型复杂建筑部件(窗、门、外墙等)的U值。/pp  新增加的防火测试设备包括建立欧洲实验室所需的全部光谱,可用于按照欧洲标准对塑料、建筑材料、纺织品等进行法律规定的测试。防火测试也可以进行全世界类似标准的检测。在汽车、建材、电缆和塑料制造业,由于安全法规日益严格,近年来全球对防火测试的需求强劲增长。通过将魏玛的经验和技术与耐驰的全球分销网络相结合,这两者的完美组合为未来成为该市场成为领跑者做了铺垫。/pp  NETZSCH TAURUS® 仪器股份有限公司将继续为客户提供魏玛的产品。此外,耐驰完全致力于履行TAURUS产品线用户的所有现有合同,包括服务、应用、现存的合同产品和备件供应。/pp  strong关于NETZSCH TAURUS® 仪器股份有限公司/strong/pp  NETZSCH TAURUS® 仪器股份有限公司是全球领先的工业和研究应用物性测试仪器制造商之一。TAURUS开发、制造和销售最先进的热导率测量设备、热箱测试工作站和用于材料测试和质量控制的防火测试系统。/pp  “我们对这次我们产品线的自然拓展感到非常高兴。现在,我们现在能够为我们的材料测试领域的客户提供更多一体化的解决方案。我热烈欢迎魏玛的新同事,并祝愿他们——以及我们所有人——有一个成功的未来。”/pp style="text-align:center"img title="Dr. Thomas Denner, Head of Business Unit Analyzing & Testing.jpg" style="max-height: 100% max-width: 100% " alt="Dr. Thomas Denner, Head of Business Unit Analyzing & Testing.jpg" src="https://img1.17img.cn/17img/images/202004/uepic/4ea87788-e796-4255-b768-152fdbb7fbf5.jpg"//pp-Thomas Denner博士,耐驰分析和测试业务部门主管br//pp  “TAURUS® 仪器股份有限公司的收购是两家公司悠久伙伴关系的结果。耐驰拥有全球销售和服务架构,TAURUS® 的客户也能从中受益。现在,我们不仅可以向全球客户提供全面的产品系列,还可以为客户提供优化的解决方案。”/pp style="text-align: center "img title="Dr. Jü rgen Blumm, Managing Director of Netzsch Gerä tebau GmbH.jpg" style="max-width:100% max-height:100% " alt="Dr. Jü rgen Blumm, Managing Director of Netzsch Gerä tebau GmbH.jpg" src="https://img1.17img.cn/17img/images/202004/uepic/5eed1c13-ab3b-4418-bdce-a5759147a4d0.jpg"//pp-Jü rgen Blumm博士,Netzsch Geratebau股份有限公司总裁/pp  “我期待着继续向世界提供来自魏玛的导热系数和防火测试产品这一激动人心的挑战。”/pp style="text-align: center "img title="Dr. André Lindemann, Managing Director NETZSCH TAURUS® Instruments GmbH.jpg" style="max-width:100% max-height:100% " alt="Dr. André Lindemann, Managing Director NETZSCH TAURUS® Instruments GmbH.jpg" src="https://img1.17img.cn/17img/images/202004/uepic/051947e1-e767-483e-a84d-6ac0d6e07847.jpg"//pp-André Lindemann博士,NETZSCH TAURUS® 仪器股份有限公司总裁/pp  “我非常确信,在耐驰,我找到了合适的合作伙伴,让我的‘宝贝’继续发展下去。我要感谢所有客户、合作伙伴和供应商数十年来愉快和有收益的合作。”/pp-Stephan Heise,执行顾问,TAURUS® 仪器公司前所有者/ppbr//p
  • 中国建筑科学研究院中技公司热流计法导热系数仪
    p  JW-Ⅲ 建筑材料热流计式导热仪是由中国建筑科学研究院中技公司生产。/pp  导热系数(或热阻)是保温材料主要热工性能之一,是鉴别材料保 温性能好坏的主要标志。根据GB/T 10295-2008研制并不断完善了单试样双热流计式 JW-Ⅲ 建筑材料热流计式导热仪,进行了自动化改造升级。热流计法导热系数仪具有测试更为快速、简便、能适应更多形状厚度的测试、价格较为适中等诸多优点。/pp  设备特点:1、电脑设置,自动控温 2、电机驱动,电动夹紧 3、配备位移传感器,自动测厚 4、配备压力传感器,过压提醒 5、自动采集数据,存储数据,打印原始数据 6、 热平衡快,温度稳定用时短,一般3个小时完成试验,比功率法导热仪节省一半时间 8、 系统误差小,检测数据重现性好。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201707/insimg/46483981-0202-4b20-913e-cb3c9b120e97.jpg" title="中技公司.jpg"//pp style="text-align: center "图 JW-Ⅲ导热系数测定仪图片/p
  • 热分析在高分子材料中的应用(DSC/TGA/导热系数/TMA/DMA)
    热分析是测量材料热力学参数或物理参数随温度变化的关系,并对这种关系进行分析的技术方法。对材料进行热分析的意义在于:材料热分析能快速准确地测定物质的晶型转变、熔融、升华、吸附、脱水、分解等变化,在表征材料的热性能、物理性能、机械性能以及稳定性等方面有着广泛的应用。由于热性能是材料的基本属性之一,对材料进行热分析可以鉴别材料的种类,判断材料的优劣,帮助材料与化学领域的产品研发,质检控制与工艺优化等。既然热分析是对材料进行质量控制的重要技术手段,那么热分析到底是如何进行的呢?根据国际热分析协会(ICTA)的归纳和分类,目前的热分析方法共分为九类十七种,而常用的热分析方法(如下图所示)包括:差示扫描量热(DSC)、热重分析(TGA)、导热系数测试、热机械分析(TMA)、动态热机械分析(DMA)等5种方法。根据不同的热分析方法采用不同的热分析仪器设备,对材料的热量、重量、尺寸、模量/柔量等参数对应温度的函数进行测量,从而获得材料的热性能。接下来,让我们简单了解一下这5种热分析方法:(1)差示扫描量热(DSC)差示扫描量热法(DSC)为使样品处于程序控制的温度下,观察样品和参比物之间的热流差随温度或时间的函数。材料的固化反应温度和热效应测定,如反应热,反应速率等;物质的热力学和动力学参数的测定,如比热容,转变热等;材料的结晶、熔融温度及其热效应测定;样品的纯度等。(2)热重分析(TGA)热重分析法(TGA)用来测量样品在特定气氛中,升温、降温或等温条件下质量变化的技术。主要用于产品的定量分析。典型的TGA曲线可以提供样品易挥发组分(水分、溶剂、单体)的挥发、聚合物分解、炭黑的燃烧和残留物(灰分、填料、玻纤)的失重台阶。TGA这种方法可以研究材料和产品的分解,并得出各组分含量的信息。TGA曲线的一阶导数曲线是大家熟知的DTG曲线,它与样品的分解速率成正比。在TGA/DSC同步测试中,DSC信号和重量信息可以同时记录。这样就可以检测并研究样品的吸放热效应。下图中的黑色曲线为PET的TGA曲线,绿色为DTG曲线。下面的为在氮气气氛下的DSC曲线。右侧红色的DSC曲线显示了玻璃化转变、冷结晶和熔融过程。在测试过程中的DSC信号 (左)可以用样品质量损失进行修正。蓝色为未修正的DSC曲线,红色为因质量损失而修正的曲线。图 使用TGA/DSC(配备DSC传感器)测试的PET曲线分解过程中,化学骨架和复杂有机组分或聚合物分解形成如水、CO2或者碳氢化合物。在无氧条件下,有机分子同样有可能降解形成炭黑。含有易挥发物质的产品可以通过TGA和傅里叶红外(FTIR)或者质谱联用来判定。(3)导热系数测试对于材料或组分的热传导性能描述,导热系数是最为重要的热物性参数。LFA激光闪射法使用红外检测器连续测量上表面中心部位的相应温升过程,得到温度升高对时间的关系曲线,并计算出所需要的参数。稳态热流法热流法(HFM)作为稳态平板法的一种,可用于直接测量低导热材料的导热系数。(4)热机械分析(TMA)热机械分析,指在使样品处于一定的程序温度下和非震动载荷作用下,测量物质的形变与温度时间等函数关系的一种技术,主要测量材料的膨胀系数和相转变温度等参数。一条典型的TMA曲线表现为在玻璃化转变温度以下的膨胀、玻璃化转变(曲线斜率的变化),玻璃化转变温度以上的膨胀和塑性变形。测试可以以膨胀模式、穿透模式或者DLTMA模式(动态负载TMA模式)进行。膨胀模式的测试目的是表征样品的膨胀或收缩。基于这个原因,仅使用较小的力来保证探头和样品接触完好。测试的结果就是热膨胀系数。下图是0.5mm的样品夹在2片石英盘之间测试的膨胀曲线。样品先在仪器中升温至90˚C消除热历史。冷却至室温后,再以20K/min的升温速率从30˚C升温到250˚C,测试的探头为圆点探头,同时探头上施加很小的力0.005N。图2中上部的曲线显示样品在玻璃化转变之前有很缓慢的膨胀。继续升温,膨胀速率明显加快,这是因为在样品在经历玻璃化转变后分子的运动能力提高。之后冷结晶和重结晶发生,样品收缩。高于150˚C样品开始膨胀直至熔融。熔融伴随着样品粘度降低和尺寸减小。图 膨胀模式测试的PET的TMA曲线穿透模式主要给出温度相关的信息。样品的厚度通常不是很重要,因为探头与样品的接触面积在实验中持续变化。刺入深度受加载的力和样品几何形状的影响。在穿透模式测量中,把0.5mm厚的样品放在石英片上,圆点探头直接与样品接触。试验条件为从30˚C升温到300˚C,升温速率20K/min,加载力0.1和0.5N。这时样品未被刺入。在穿透测试过程中,探头一点一点地刺入样品。纵坐标信号在玻璃化转变发生时明显的减小,冷结晶发生时保持基本不变,到熔融又开始减小(图下图)。图 TMA穿透模式测试PETDLTMA是一种高灵敏度测试物理性能的方法。和DSC相比,它可以描述样品的机械行为。在DLTMA模式下,加载在样品上的力以给定频率高低切换。它可以测试出样品中微弱的转变,膨胀和弹性(杨氏模量)。样品刚度越大,振幅越小。图4测试的样品玻璃化转变在72˚C,之后为液态下的膨胀。振幅大是因为样品太软。然后会出现冷结晶,PET收缩,振幅开始减小。140˚C,样品重新变硬,继续膨胀直至160˚C。图 DLTMA(动态负载TMA模式)测试PET(5)动态热机械分析(DMA)使样品处于程序控制的温度下,并施加单频或多频的振荡力,研究样品的机械行为,测定其储能模量、损耗模量和损耗因子随温度、时间与力的频率的函数关系。热分析技术的实际应用热分析技术在材料领域应用广泛,如高分子材料及制品(塑料、橡胶、纤维等)、PCB/电子材料、金属材料及制品、航空材料、汽车零部件、复合材料等领域。下面通过我们实验室技术工程师做的两个热分析测试案例来展示它的应用:1.高分子材料的热裂解测试玻纤增强PA66主要应用于需要高刚性和尺寸稳定性的机械部件护罩。玻纤含量影响到制件的拉伸强度、断裂伸长率、冲击强度等力学性能。2.PCB板的爆板时间测量将样品升温到某一温度后,保持该温度并开始计时,样品发生爆板现象的时刻与保温初始时刻的时间间隔为爆板时间。其实,对于不同的材料和关注点的不同,我们所采用的热分析方法也存在差异,通常会根据实际样品情况和测试需求来选择不同的分析方法。例如,高分子材料:想要了解它的特征温度、耐热性等性能,要用DSC分析;想要了解它的极限耐热温度、组份含量、填料含量等,要用TGA分析。
  • 岂止于图谱——TA仪器测试技术分享会取得圆满成功
    2015年4月28日,“岂止于图谱——TA仪器测试技术分享会”在上海西藏大厦万怡酒店顺利举行。此次会议有别于传统的以产品推介为主的分享会,主要针对工业客户的需求,以日常分析测试工作为基础,就如何正确又巧妙的安排热分析测试,如何正确解读热分析、流变和热物性测试数据,及许多客户关心的热点问题和应用进行了讲解。 本次会议主题新颖、内容针对性强、技术含量高,因此吸引了来自工业领域及学术领域的数十家单位超过百名用户的参加,更有从苏南和浙江的用户特意赶来参加我们的分享会。会上, TA仪器亚太区的产品应用经理许炎山先生结合自己丰富的应用经验对热分析数据差异进行了详细的解读。除此以外,作为热分析领域首屈一指的应用专家,许经理通过对TA仪器国内外各种经典案例的阐述和分析, 深入浅出的向大家展示了如何做出真正好的数据和图谱以及如何辨别数据的真伪,确保实验结果的真实可靠。 许经理还特别就热分析在几个热点行业中的应用做了深入大探讨,如:1)关于利用TGA如何判定分解温度及分解速率,指出了不同的TGA方法应对不同测试目的而得到准确的测试数据和效果。如使用高分辨TGA方法测定材料的分解温度较之常规的TGA升温方法更为精确;利用不同气氛比例下样品的分解速率获得样品的饱和蒸汽压和热分解速率;利用TGA分解动力学的方法分析了材料的长期耐热性和失效时期;利用温度调制TGA方法直接获得材料的分解活化能; 2)用DSC的方法解决工业中出现的不同材料问题。如家电产品各部件正常与失效品材质分析比较;PP/PE BLEND 定量检测;封装用PI膜材质鉴定;PET宝特瓶胚加工性优劣分析;3)DMA中时间温度等效(TTS)在分析产品中的应用。如通过TTS功能选择智能手机中的高分子振膜。由于案例生动形象,加上许经理风趣幽默的讲解,与会者纷纷对此演讲表现出了浓厚的兴趣,高度赞扬了许经理的高超的专业技术知识及大师风范。 当天下午,TA仪器应用专家李润明博士以及马倩博士分别就材料研发涉及的黏弹测试技术以及如何测定材料的热传导性能进行了生动的讲解。李润明博士的报告集中介绍了流变技术在日常工作中的重要应用,如日常建筑、航空航天,汽车行业等各个领域中所使用的材料都经历着流变学的行为,而用流变的技术来模拟和反馈这些材料的行为是各个研发分析专家必不可少的手段。特别地,李博士深入地探讨了利用流变技术获得材料研究中应力-应变曲线的速率依赖性,应力-应变曲线的温度依赖性,固体/流体的模量对频率依赖特征,结晶对动态模量的影响,交联对动态模量的影响,固化过程中的黏弹性演变,最低黏度温度和凝胶化温度测定等诸多方面。 对于TA仪器新产品家族——热物性测量仪器,马倩博士深入潜出地介绍了不同热物性测量仪器在日常生活中的应用。热物性仪器包括了导热仪,热膨胀仪,热相变仪和热显微镜等,可覆盖的材料包括了高分子材料,复合材料,金属材料,无机非金属材料等等。马博士对日常生活中人们通常忽略的应用场合作了精彩的分析,如测定热扩散系数对于盘式制动器的重要指导意义,灶台材料热扩散系数的重要性,建筑材料导热系数的指导意义,电子元器件热管理和散热设计等。特别地,马博士指出了不同的材料应当使用不同的测试方法,而TA仪器的热物性测量仪器涵盖了不同形态的材料,如除了常规的固体材料外,对于膜状材料,液体材料和粉体材料也能轻松测量。最后,马博士对新仪器高温光学膨胀仪作了详细介绍。高温光学膨胀仪可以实时监控和测定材料在升温过程中形态的变化过程,其收缩、膨胀,熔融坍缩等过程能采用实时视频的方式记录下来,并直接得出材料的烧结点、软化点、球化、半球化和熔点等重要信息。 TA仪器优秀的技术专家们的精彩演讲获得了与会者的热烈反响,演讲结束后的互动环节上大家纷纷提出自己的问题及看法。甚至在结束后,仍有大量与会者们希望与技术专家们进行进一步交流。 会后,与会者们纷纷表示TA仪器应多多举办这种技术应用为主的,并切合用户需求的分享会;同时,TA仪器还借此会议公布了官方微信公众账号,希望为大家提供一个更好的线上交流互动平台,供用户获得更多的应用文章、技术视频等产品技术信息。TA仪器亚太区的产品应用经理许炎山先生正在报告中TA仪器流变技术专家李润明博士正在进行案例讲解会议间歇,许炎山经理就客户提出的问题进行耐心的回答会议间歇,TA仪器南方区经理董传波先生正在和客户进行技术交流TA仪器热物性技术技术专家马倩博士正在回答客户关于导热仪的相关技术问题
  • 热分析及热物性仪器中标披露及新品速递(2021上半年)
    自2021年1-6月,中国政府采购网陆续发布了热分析及热物性仪器的中标数据。仪器类型涵盖了热重分析仪、差示扫描量热仪、同步热分析仪、热机械分析仪、导热仪、热膨胀仪、熔点仪和量热仪等。仪器品牌方面,进口品牌出现了TA、耐驰、梅特勒-托利多、珀金埃尔默、塞塔拉姆、林赛斯、岛津、理学、Rubolab、费尔伯恩、瑞士步琦、马尔文等的身影;国产品牌中,则出现仰仪科技、卓光仪器;总体来看进口仪器中标情况优于国产;采购需求中,热重分析仪、差示扫描量热仪以及同步热分析仪产品中,出现部分高温、高压产品的购买需求;仪器价格方面,热重分析仪和量热仪均有出现单台套价格超过200万,综合热分析仪、导热仪、热分析联用仪单台套价格最高超100万,高压产品单台套价格均在200万上下;采购数量上,各采购单位采购每类型仪器一般为1台套。仪器信息网热分析板块品类先锋(截至2021.8.20)仪器专场(点击查看相应专场)品类先锋(点击查看相应品类先锋仪器)热重分析仪/热天平(TGA)耐驰差示扫描量热仪(DSC/DTA)菁仪北京恒久同步热分析仪(STA)耐驰日立分析仪器热分析联用仪理学耐驰热机械分析仪塞塔拉姆日立分析仪器热膨胀仪TA仪器导热仪TA仪器耐驰熔点仪仪电物光量热仪三德PARR值得注意的是,在单一来源采购公告中,大连理工大学有两款仪器进行了单一来源采购,理由基本归纳为经调研国内外仪器无法满足技术需求,故只能进行单一来源采购。1. 大连理工大学单一来源采购Rubolab的RuboSORP-TGA MP-SHT型号高压热重分析仪 Rubolab 磁悬浮天平超高温超高压热重分析仪公告中提到的单一来源采购理由:“大连理工大学煤化工研究设计所长期从事煤炭及生物质、固体废弃物等的高效清洁利用技术,在煤炭分质转化、煤焦油的深加工和生物质及工业固废的合理利用等方面开展基础和应用研究,以解决能源转化、环境保护过程中的关键工艺和材料等科学和技术问题。目前正在牵头承担国家重点研发计划项目“低变质煤直接转化制高品质液体燃料和化学品的基础研究”和“煤与生物质共热解过程中的交互作用及机制研究”等多项国家自然科学基金项目。项目研究内容是测定煤及生物质等固体燃料在不同反应气氛、不同压力条件下随温度变化过程重量的变化,从而认识固体燃料中不同组分的反应特性,为煤炭分质转化、生物质及工业固废的合理利用等工艺技术的研究与开发提供技术支撑。目前实验室有常压热天平,无法满足高压和还原性气氛下的反应要求。本项目拟通过构建高压、高温质量监测系统,对物质的热解及气化、石油裂化、催化剂活化、腐蚀和活性等特征进行研究,因此实验环境包括高温、高压、氧化性和还原性气氛及水蒸气条件等。目前国内外市场上的高温高压热重分析仪中,部分产品只适合氧化性气氛,无法在还原性气氛(如氢气)和水蒸气条件下运行,而加氢及水汽重整是拟开展研究的重要内容,因此无法满足本项目技术需求。德国儒亚的产品是带有磁悬浮天平、加样电梯辅助系统、高压冷壁反应器、电加热炉和GDU 全自动高压动态气体蒸汽引入和压力控制系统以及质谱接口,允许的温度/压力为:1500℃@50 bar。实验的气氛允许接入不同的气体或者气体的混合气,可以测试所有有机和无机气体,包括腐蚀性气体和蒸汽能满足本项目的技术要求。因此,只能采用单一来源采购方式进行采购。”2. 大连理工大学欲单一来源采购梅特勒-托利多的RC1mxTM全自动实验室反应量热器 梅特勒-托利多 全自动实验室反应量热仪 RC1mx公告中提到的单一来源采购理由:“大连理工大学化工学院H502实验室拟开展化工热安全方面的研究,采用实验与理论分析的方法,主要围绕典型化工介质和反应工艺(聚合反应、热分解反应、过氧化反应)热安全特性,对不同工况下的聚合反应、热分解反应、过氧化反应等化工工艺的失控过程进行研究,考察冷却温度、搅拌速率、加料速率、自催化速率对反应过程的影响,分析反应体系压力温度变化,提出合理的反应失控判据。基于以上基础开展化学反应失控抑制与泄放技术研究,优化泄放位置,开发新型高效的淬灭剂和快速响应的喷料装置,建立安全泄放压力预测模型和泄放面积计算方法。基于该项目研究内容,需采购全自动合成反应量热仪。项目研究围绕的反应工艺常伴有高温、高压及多组分复杂工况,同时研究需对进料速率、搅拌速率、冷却温度进行精准控制,进而对反应失控系统温升、最高温度、最大压力、最大温升速率、最大升压速率进行精确快速测量。因此,购置的全自动反应量热仪的最高温度需达到300℃左右(乙烯聚合反应最高温度),并具备提供低温反应环境的能力,最大压力应不低于20个大气压(低压法合成聚乙烯的最大压力),控温速率迟滞性要小。经调研,国内部分全自动反应量热仪的最高温度为200℃左右,无法达到300℃,同时控温采用外置加热/冷却装置,存在控温缓滞。某全自动反应量热仪校准加热器功率较大易产生热点,影响反应体系和原有的实际工艺条件。国外部分全自动反应量热仪的最高温度为200℃左右,无法达到300℃,且设备的最大压力为常压,无法进行压力较高的实验。且采用外置加热/冷却装置进行控温,存在控温滞缓,校准加热器功率较大易产生热点。而梅特勒-托利多国际贸易(上海)有限公司的RC1mxTM全自动实验室反应量热器温度范围为-70-300℃,最大压力可达100bar,采用内置快速冷热硅油混合控温可实现没有缓滞的快速冷却及加热,校准加热器功率25W(选配5W)不容易产生影响反应体系的热点。因此,只有梅特勒-托利多国际贸易(上海)有限公司的RC1mxTM全自动实验室反应量热器能够满足本项目温度、压力、控温等技术要求的需要,只能采用单一来源采购方式进行采购。”2021年上半年新品速递日立高新技术推出NEXTADSC系列热分析仪,用于先进材料开发和质量控制2021年1月19日,英国牛津—日立高新技术分析科学公司(Hitachi High Tech Analytical Science Corporation)(日立高新技术全资子公司,从事分析和测量仪器的制造和销售),推出了用于先进材料开发和产品质量控制的新型差示扫描量热仪——NEXTA DSC。作为日立高新技术高级热分析仪系列的最新产品,NEXTA DSC为实验室和制造商两者都提供了一种新的选择,可以进行最详细和彻底的DSC分析。详见《日立高新技术推出NEXTADSC系列热分析仪,用于先进材料开发和质量控制》
  • 揭秘!热电材料研究实验室仪器配置清单
    热电材料能够实现热电转换,具有安全、节能、环保等优点,近年来备受关注,许多学者也围绕其开展了大量的研究工作。在本文,仪器信息网为大家盘点了热电材料研究实验室常用的制备与表征仪器清单。国内研究热电材料的课题组众多,在小编的雷达范围内,整理归纳了其中四个课题组的仪器展示表格:1.中国科学院上海硅酸盐研究所热电转换材料与器件研究课题组;2.中国科学院金属研究所热电材料与器件课题组;3.同济大学材料科学与工程学院热电课题组;4.哈尔滨工业大学(深圳)材料科学与工程学院热电材料课题组。一、中国科学院上海硅酸盐研究所热电转换材料与器件研究课题组(课题组长:史迅研究员;副组长:柏胜强高级工程师;科研队伍:陈立东研究员、姚琴副研究员、瞿三寅副研究员、仇鹏飞副研究员等)该课题组主要从事高性能热电材料的设计、制备与性能优化以及高性能热电器件的设计、制造与集成方面的研究,主要内容包括:1.声子液体电子晶体材料 (类液态材料);2.类金刚石结构;3.笼状化合物;4.有机热电材料和有机/无机复合热电材料;5.热电薄膜与微型热电薄膜器件;6.高性能热电器件设计与制造技术;7.热电空调/发电系统设计与集成技术;8.热电材料与器件测量技术。课题组仪器设备展示Seebeck系数和电阻测试系统(ZEM-3)布劳恩手套箱RS50/500型管式炉纳博热( Nabertherm)LH15/13型箱式炉 放电等离子体快速烧结设备激光导热仪 霍尔系数测试设备电导率及塞贝克系数测试设备 X射线广角/小角衍射设备MSP(Modified Small Punch)试验装置二、中国科学院金属研究所热电材料与器件课题组(课题组长:邰凯平研究员;小组成员:康斯清工程师)该课题组长期从事功能材料设计、制备和性能表征方面的研究工作,以界面性质对材料物理、化学性能调控作用的共性基础科学问题为研究主线,主要研究内容包括:低维热电材料;多物理外场耦合仿真环境原位透射电镜表征;纳米结构抗辐照损伤材料。在原位透射电镜技术领域的成果被Science(350,9886,2015)、Chem Rev(116,11061,2016)、Adv Mater(02519,2016)等期刊评述为近十年来纳米材料原位电镜表征技术领域的关键研究成果,并被编入电子显微学教科书“Transmission Electron Microscopy”(Page 48,Springer,Heidelberg,2016)。课题组仪器设备展示多靶磁控溅射沉积系统-1多靶磁控溅射沉积系统-2热电性能测试设备ALD原子层沉积系统等离子体处理/原位TEM样品杆预抽系统Hall测试系统AFM红外成像显微镜微束/飞秒激光微纳加工系统紫外光刻机电子束/热蒸发镀膜系统3Omega频域法热导率测试系统稳态法热导率测试系统球型焊线机高温管式炉红外快速退火炉自主研制的各种类型原位仿真环境(JEOL/FEI)TEM样品杆三、同济大学材料科学与工程学院热电课题组(课题组长:裴艳中教授;小组成员:李文副教授)该研究小组主要针对当前热电材料转换效率较低这一技术瓶颈,从热电材料所涉及的基本物理及化学问题出发,设计和开发出高转换效率热电材料和器件。立足于前期工作的基础之上,今后具体的研究对象主要集中在半导体材料,研究内容主要包括:1.先进的材料制备方法;2.电、热、光、磁及微观结构的表征方法;3.能源材料性能所隐含的基本物理及化学问题;4.理论指导下的新型能源材料设计和开发;5.其它应用背景的半导体新材料的研究与开发。课题组仪器设备展示自主研制设备霍尔系数/塞贝克系数/电阻率同步测试 2个样品同时测试,300~900K,磁场1.5T塞贝克系数/电阻率同步测试系统 2个样品同时测试,300~1100K室温塞贝克系数测试系统Oxford低温(1.5~400K)与强磁场(12T)综合物理性能(Nernst,Seebeck,Hall系数与电/热导率)测试系统电弧熔炼系统电弧熔炼系统高温热压系统(升温速率>1000C/min)封装系统材料生长炉商业设备台式扫描电镜&能谱XRDFTIR红外光谱仪声速测定仪激光导热仪惰性气氛手套箱高温熔融炉四、哈尔滨工业大学(深圳)材料科学与工程学院热电材料课题组(课题组长张倩教授,学术顾问刘兴军教授)该课题组正式成立于2016年秋。主要研究方向为:热电半导体能源材料的电声输运调控、热电器件的设计与效率提升,柔性可穿戴发电与制冷器件。采用与相图工程和机器学习相结合的手段,优化传统热电材料,开发新型热电材料,促进热电发电与制冷的大规模商业应用进程。课题组仪器设备展示材料制备系统电弧熔炼炉高频悬浮熔炼炉立式真空管式炉微型金属熔炼炉双工位真空手套箱真空封管系统热压烧结系统放电等离子烧结SPS3D打印机多靶磁控溅射镀膜仪电子束蒸发镀膜仪高温箱式炉高能球磨机井式炉金相研磨抛光机金刚石线切割机性能测试系统激光导热仪-LFA 457差示扫描量热仪-DSC 404同步热分析仪-STA 2500热机械分析仪-TMA 457电阻率/温差电动势测试仪-CTAUV-vis-NIR变温霍尔测试系统变温红外光谱仪发电效率特性测定装置接触电阻测试平台焊接平台需要说明的是,以上仪器设备展示仅根据各课题组网站信息整理,并非各课题组实验室仪器的全部配置。因此,小编特整理了热电材料研究实验室常用的制备与表征仪器清单,供君参考。热电材料研究实验室仪器配置清单热电材料制备常用仪器电子天平马弗炉/电阻炉/管式炉/实验炉鼓风/真空干燥箱材料生长炉磁力搅拌器球磨机超声波清洗机放电等离子烧结SPS离心机悬浮熔炼炉/电弧熔炼炉石墨磨具原子层沉积系统真空/惰性气氛手套箱电子束/热蒸发镀膜设备恒温油浴/水浴锅退火炉游标卡尺3D打印机切割机研磨抛光机热电材料表征常用仪器X射线衍射仪赛贝克系数/电阻率测试系统X射线光电子能谱仪霍尔系数测试设备热重分析仪介电性能测试系统扫描电子显微镜热电转换效率测量系统透射电子显微镜电/热导率测试系统电子探针分析仪声速测定仪热膨胀仪红外光谱仪显微硬度仪热机械分析仪激光热导仪焊接平台差热扫描热量仪综合物理性能测试系统【近期网络会议推荐】3月23日“热电材料表征与检测技术”主题网络研讨会免费报名听会链接:https://www.instrument.com.cn/webinar/meetings/2021RD/
  • 林赛斯邀您参加西安国际复合材料大会!
    8月20日,林赛斯与您相约古城西安,共赴国际复合材料大会。B29展位,与您不见不散。第二十一届国际复合材料大会将于2017年8月20日-25日在陕西省西安曲江国际会议中心举办。国际复合材料大会 (ICCM) 始于 1975 年,每两年召开一次,至今已举办过二十届,是全球复合材料界历史最长、规模最大、最具权威的学术研讨会。ICCM 曾经分别于 1989 年(第 7 届)、2001 年(第13 届)在中国举办。中国复合材料学会组织国内有关机构与学者,经过两次申办努力,终于在暌违 16 年后成功获得第 21 届国际复合材料大会的举办权。林赛斯如约和您相遇,德国林赛斯国际公司(LINSEIS)总部位于德国巴伐利亚州泽尔布(Selb),是一家有着60多年光荣历史和丰富专业经验的世界领先(热)分析仪器设备生产商,公司致力于研究、开发、生产热分析科学仪器,其产品的技术和质量一直处于业界领先地位。为了满足复合材料快速发展及多样化测量需求,德国林赛斯公司用最完善的测量体系为科研工作者提供最优的热物性测量方案。? 从开发出世界上第一台热膨胀开始,经过60多年的不断发展,林赛斯开创出了-260℃--2800℃全温度段热物性的测试方案。从全球唯一的皮米级激光膨胀仪,到高温4样品膨胀仪,再到为了解决高分子材料膨胀测量的8样品膨胀仪,以及为了满足无机材料等测试的光学膨胀仪,林赛斯在材料膨胀性能测试上树立了一个有一个丰碑。同时,林赛斯也不断推出了最全面的导热性能测试方案:从高端的激光闪射法(LFA),到热流法导热仪(HFM),专利技术的热桥法导热仪(THB),再到纳米时域反射法导热仪(LS-LFA),林赛斯可以帮你解决各种材料的导热测量需求。全球唯一的薄膜综合物性分析系统(TFA),可以帮你一次性解决薄膜多种性能测试问题,林赛斯LSR可以帮你解决材料电阻、塞贝克等热电性能测试等......,林赛斯不断推陈出新,不仅拥有特殊测量需求的磁悬浮热重系统(MSB),还推出了世界上唯一的高压热重分析仪(STA HP)来满足各个行业材料热性能材料需求......? 林赛斯热烈欢迎每一位学者、用户来和我们交流,提供宝贵意见。林赛斯将开拓创新,和您一起推动和促进热分析技术在中国的应用发展。我们希望最先进的的热分析技术能够协助每一位科研人员取得更好的成果! 会议时间:2017 年 8 月 21 日至 25 日会议地点:陕西西安 曲江国际会议中心展位号:B29联系方式:18611443573;wangpeng@chanceint.com
  • “绝缘”又“导热”,突破尖端电子装备发展瓶颈
    聚合物是一类重要的电工绝缘材料,然而聚合物材料的导热性普遍性较差,提升聚合物的导热性往往以牺牲绝缘性能为代价。“绝缘和导热的矛盾”是制约聚合物材料在尖端电气电子装备应用的瓶颈之一。3月2日,《自然》刊发上海交通大学化学化工学院教授黄兴溢团队与合作者的最新研究成果。研究人员通过等规链段层状排列构建阵列化纳米区域,并在阵列化纳米区域中引入亲电陷阱基团,在大幅提升柔性聚合物电介质薄膜导热性能的基础上使电阻率提升了一个数量级,解决了聚合物材料导热和绝缘的矛盾。这种聚合物电介质薄膜性能稳定,且具有良好击穿自愈性,因此在电磁能装备、新能源汽车、电力电子等领域将有广阔应用前景。导热和绝缘矛盾聚合物电介质薄膜电容器具有极高的能量转换速率,在电磁能装备、电力电子以及新能源装备等领域的作用至关重要。随着装备、器件往紧凑化、轻量化、工作环境极端化方向发展,对聚合物电介质薄膜储能密度及耐高温性能的要求越来越高。电荷存储密度和电场强度的平方成正比。因此,电介质薄膜承受电场的能力增强,电荷存储密度就会快速增加。然而,聚合物薄膜在高电场下以电子电导为主,不再符合欧姆定律,电导电流随电场强度增加呈指数增大,会产生大量的热。传统聚合物电介质的导热系数普遍较低,且散热效率也很低,这会造成介质温度快速升高,进而引起电导指数增加、耐电强度急速降低等连锁反应,造成器件、装备失效等严重问题。尽管可以通过引入纳米添加等方式增加聚合物电介质的导热系数,但这往往以牺牲耐电强度为代价,更重要的是,纳米添加给薄膜制造工艺也带来极大挑战。因此,开发耐高温、本征高导热的聚合物电介质薄膜是最好选择。设计双链结构共聚物为解决此类问题,黄兴溢团队设计出一种双链结构共聚物(PSBNP-co-PTN)。该共聚物通过π-π堆叠作用自组装成高度有序阵列。通过偏振拉曼光谱测试发现,共聚物薄膜的偏振信号在平面上呈各向同性,在断裂面上呈各向异性。“这表明有序阵列平行于表面,因此,电介质薄膜在垂直平面方向表现出高导热系数。”黄兴溢说。研究团队通过密度泛函理论分析和热刺激电流实验发现,这种共聚物的链结构段间,存在深度为1.51 eV的电荷陷阱,且随着外电场强度增加,电荷陷阱深度进一步增大。在PSBNP有序阵列中引入一定量的PTNI分子,共聚物能表现出最优的电气绝缘性和最高的电击穿强度。电极化储能测试表明,其最大放电能量密度远优于现有的聚合物及其复合电介质薄膜。突破电子装备发展瓶颈普通聚合物和聚醚酰亚胺(PEI,已知最好的商品耐高温聚合物电介质薄膜)连续充-放电循环过程中的发热现象,在这种高导热的共聚物电介质薄膜中并未出现,研究人员甚至未观察到局部热积聚现象。实验证明,这种共聚物电介质薄膜连续充-放电循环寿命是PEI薄膜的6倍。值得一提的是,该薄膜的碳含量相对较低,这赋予了其优异的自愈性,电镜图像清晰显示了电击穿区域四周的铝金属电极被蒸发除去,碳化通道孤立于金属电极,使击穿后的金属化聚合物薄膜整体仍保持高绝缘性。自愈后的储能性没有出现明显劣化,仍能进行连续充-放电循环。“这种共聚物电介质薄膜厚度方向的本征导热系数为1.96 ± 0.06 W/(mK),是目前报道的绝缘聚合物本征导热系数的最高值。”该论文共同第一作者、助理研究员陈杰介绍说,“共聚物电介质薄膜在50000次充-放电循环后储能性依然稳定,且具有良好击穿自愈性。”“这一研究是电气工程、化学、材料、工程热物理等多学科的深度交叉融合。”黄兴溢介绍说,上海交通大学江平开教授、朱新远教授、于春阳副研究员、钱小石教授、鲍华教授,以及西安交通大学李盛涛教授和西南交通大学吴广宁教授都参与了本项研究。目前,相关技术已获发明专利授权,相关产品将在电磁能装备、新能源汽车、电力电子等领域得到广泛应用。
  • 热分析仪6月招中标信息汇总—门类琳琅满目
    本网编辑对2018年6月,热分析仪器的政府机构采购招中标信息进行了汇总。  26家机构发布了招标信息,平均接近每天有一家政府机构发布采购讯息 需求仪器类别共计17类,其中同步热分析仪(STA)的需求最多,可以看出科研院所对热分析仪功能多样化的要求较高 最高预算金额为河南师范大学动力电池加速量热仪采购项目的250万元,从侧面也可以反映出,随着近年来新能源汽车产业不断受到政策导向及市场需求双重利好因素的影响,动力电池领域的研究也在不断深入,对其投入也在不断加大。表12018年6月热分析仪政府机构采购招标信息汇总采购单位公告时间采购仪器数量预算单价(元)昆明理工大学2018.6.29热重-红外联用仪2中国科学院青海盐湖研究所2018.6.29同步热分析仪1380000福建师范大学2018.6.28差示扫描量热仪及热重分析仪1280000差示扫描量热仪及热重分析仪1260000中国石油大学(华东)2018.6.26同步热分析仪1500000河南师范大学2018.6.25动力电池加速量热仪12500000东北农业大学2018.6.25差示量热扫描仪1300000河西学院2018.6.22导热系数仪1熔体流动速率测定仪1华北电力大学2018.6.22同步热分析-红外光谱联用系统11200000华中师范大学2018.6.22差示扫描量热仪1山东省医学科学院药物研究所2018.6.21同步热分析仪上海大学2018.6.21差示扫描量热仪1360000广西大学2018.6.19激光导热仪1河北工业大学2018.6.19氧弹式量热计6华东理工大学2018.6.15比热测量实验装置1热电当量实验装置1热腔辐射实验装置1热膨胀系统测量1哈尔滨工程大学2018.6.15热膨胀仪1445000济宁医学院2018.6.15同步热分析仪环境保护部华南环境科学研究所2018.6.15氧弹式量热计平凉市产品质量监督检验中心2018.6.12全自动量热仪1华东理工大学2018.6.12全自动实验室反应量热系统南宁市食品药品检验所2018.6.11熔点仪1华北水利水电大学土木学院2018.6.8HotDisk导热系数仪1广西师范大学2018.6.6差热分析仪3差示扫描量热仪3热重分析仪3福建工程学院2018.6.4差示扫描量热仪及热重分析仪460000差示扫描量热仪及热重分析仪940000铜川市质量技术监督局2018.6.4量热仪水泥水化热测定仪吉林大学2018.6.1高温高压同步热分析仪2287600农业农村部规划设计研究院2018.6.1同步热分析仪1  整个6月共有16家政府机构的包含热分析仪的采购项目完成中标及公示,可以看出,高额单价的仪器基本为国外品牌,尤其是中国科学院青岛生物能源与过程研究所采购的绝热加速量热仪单价高达183.6万元 而国产热分析仪的采购单价多在10万元以下,但仪器品类及数量较多。表22018年6月热分析仪政府采购中标信息汇总采购单位公告时间采购仪器采购型号数量采购单价(元)甘肃省药品检验研究院2018.6.27熔点仪梅特勒MP901185000广西科技大学2018.6.27显微目视熔点仪X-4B16000农业农村部规划设计研究院2018.6.26同步热分析仪STA449F5Jupiter1515000哈尔滨工程大学2018.6.25热膨胀仪EU575001甘肃中医药大学2018.6.25微机熔点仪上海申光WRS-1C28400差热分析仪上海盈诺YND-C1465000桂林航天工业学院2018.6.21导热系数测定仪大华YBF-3304900桂林理工大学2018.6.21全自动熔点仪MP1201016000河南农业大学林学院2018.6.21DSC/TGA/DTA同步热分析仪珀金埃尔默STA8001300000中国石油大学(北京)2018.6.11准稳态法比热导热系数测定仪福建师范大学2018.6.8固体比热容测定仪杭州大华DH4603B113950导热系数测定仪世纪中科光电ZKY-BRDR118650兰州理工大学2018.6.8热机械曲线仪承德金建XWR-500A1150000济南大学2018.6.7差示扫描量热仪东北林业大学2018.6.6热重-差热分析仪广西师范大学2018.6.6热重分析仪TDA-HC1000352000辽宁工程技术大学2018.6.5气体定压比热测定仪QDYR空气绝热指数测定仪KQJR中温法向辐射率测量仪ZWFX非[准]稳态导热仪FWDR-I氧氮式热量计(全自动量热仪)HKRL-4000B中国科学院青岛生物能源与过程研究所2018.6.4绝热加速量热仪Btc500&btc13011836094.5
  • 西华大学采购南京大展的DSC300C 差示扫描量热仪
    为了提高实验技能和科研能力,西华大学采购了南京大展生产的一款DZ-DSC300C差示扫描量热仪,其主要用于测量材料在加热或冷却过程中产生的微小热量变化,可以达到亚微焦级别的精度。  在仪器的调试现场,技术工程师对其仪器使用、实验操作、图谱分析等进行培训和讲解,针对现场人员的疑问进行解答。当我们在使用仪器的时候,要对仪器的用途、性能特点有一定了解,然后结合实际的操作,对仪器的整体有充分的认知,才能让仪器对实验研究发挥作用。  DZ-DSC300C差示扫描量热仪有哪些优势?  1.精度高,可达到0.001,温度范围是-40~60℃,采用液氮制冷,降温快、基线稳定。  2.宽温度范围:差示扫描量热仪可以在广泛的温度范围内进行测试,从室温到高温,甚至是低温范围,可以满足不同材料在不同温度下的测试需求。  3.多功能性:差示扫描量热仪可以用于测量材料的热容、热稳定性、相变、氧化稳定性等多种性质,可以应用于多个领域,如材料科学、化学、生命科学等。  4.高效性:差示扫描量热仪具有快速测试速度的优点,可以在较短时间内获得准确的测试结果,从而提高实验效率。  5.易于操作和维护:差示扫描量热仪的操作相对简单,且维护成本较低,使得它适用于多种实验室环境和实验人员。 南京大展仪器是一家热分析仪器的生产厂家,除了差示扫描量热仪,还有热重分析仪、同步热分析仪、导热仪、炭黑含量测试仪和介电常数测试仪等,针对不同客户的测试需求,可匹配相应的产品。
  • 拟1.5亿采购球差电镜等仪器!湖北发改委批复国重实验室项目
    1月15日,湖北省发改委发布《省发改委关于武汉科技大学省部共建耐火材料与冶金国家重点实验室重大科研设备购置项目可行性研究报告的批复》。湖北省发改委委托武汉市工程咨询部有限公司组织专家评审了武汉科技大学省部共建耐火材料与冶金国家重点实验室重大科研设备购置项目可行性研究报告。信息显示,该项目建设地址位于武汉市青山区和平大道947号武汉科技大学青山校区钢铁楼及省部共建耐火材料与冶金国家重点实验室精细表征中心。项目主要建设精细表征公共设备平台、绿色功能型耐火材料特色设备平台、高端金属材料特色设备平台三大公共设备平台,购置双球差校正300kV透射电镜、三维原子探针、原位刻蚀与纳微分析测试系统等21台(套)重大科研仪器设备。项目估算总投资15502.29万元,主要用于重大科研仪器设备购置,资金来源为除申请中央预算内投资外,其余由学校自筹解决。以下为本次重大科研仪器设备清单表:序号设备(仪器)名称规格型号单位数量单价   (万元)总价   (万元)1双球差校正300kV 透射电镜JEM-ARM300F2台1380038002三维原子探针LEAP 6000 XR台1400040003原位刻蚀与纳微分析测试系统Helios+AZtecLIve170+Symmetry套1958.8958.84场发射扫描电镜+矿物矿相综分析系统Apreo 2S台15605605热场发射扫描电子显微镜Phenom Pharos台11901906集成化多模态原位扫描电镜系统GeminiSEM360台1100010007环境扫描电镜Quattro S台15005008X 射线吸收精细结构XAFS300台15005009纳米压痕仪G200X台1179.5179.510高速拉伸试验机HTM 16020台1398.3398.311DIL 淬火膨胀仪DIL805AD台128028012金属型板材成形试验机Erichsen142-20台121021013微观力学性能检测系统FT-I04FEMTO-INDENTER台118018014高温激光导热仪LFA467HT台1183.3183.315高温动态疲劳试验机Landmark 370.50台1539.98539.9816热等静压设备AIP10-30H台142042017高温比热测试仪96line台120020018厚薄膜制备及热处理加工系统STX- 1203A台1236.524236.52419材料气氛制备与分子结构测试加工系统PILOT-A4台1421.8974421.897420高温电磁频谱本征参数测试系统SW-140VNAWKST2台1346.77346.7721陶瓷特种成型与透波测试系统ADT-3D-ZP台1397.22397.22合计2115502.29据了解,省部共建耐火材料与冶金国家重点实验室于2013年12月由科技部和湖北省人民政府批准依托武汉科技大学建设。实验室聚焦世界耐火材料与冶金学科前沿和国家重大需求以及湖北经济社会发展,研制高温工业关键耐火材料与高性能钢铁材料,为湖北省和国家经济建设提供支撑,形成了耐火材料设计理论与制备技术、耐火材料高温服役行为及功能化、冶金过程理论与高性能钢铁材料和特色冶金资源高效利用四个特色鲜明的研究方向。实验室现有仪器设备4223台套,总价值约1.47亿元。实验室开展耐火材料轻量化、低碳化、功能化和资源化研究,开拓短流程低成本汽车板钢制造技术,与武钢合作研究桥索钢、重轨钢,研发成果已在沪苏通大桥、极地破冰船、三峡工程上得到使用。近年来实验室研发的Micro-TEC芯片和硅碳负极材料成功在湖北省转化落地,转化金额近2亿元。
  • 热分析仪一周招中标信息汇总—科研院所都青睐哪些仪器?
    本网编辑对近一周内(5月28日-6月3日),热分析仪领域中的政府机构采购招中标信息进行了汇总。可以看出,上周热分析仪采购行为十分活跃,有9家单位对热分析仪表达了采购意向。6家单位在上周完成中标,中标总额约1100万元。具体讯息列于下表:表1上周热分析仪政府部门机构招标采购信息招标单位公告时间包号品号仪器名称数量联系方式联系人项目编号广西科技大学2018.5.28133显微目视熔点仪10722-2685538刘骝GXZC2018-G1-16361-ZXHT甘肃省药品检验研究院2018.5.28314热缩试验仪10931-7822921王主任0876-180620347熔点仪1631玻璃膨胀系数仪1中国热带农业科学院热带生物技术研究所2018.5.2811热重-气质联用仪10898-66895320弓小姐GZCQC1802HG05012甘肃中医药大学2018.5.3111微机熔点仪218189693591訾俊龙ZFCG-XH-2018-01933差热分析仪4河南农业大学2018.5.3121DSC/TGA/DTA同步热分析仪10371-63558857张老师豫财招标采购-2018-600农业农村部规划设计研究院2018.6.116DSC差示量热扫描仪(同步热分析仪)1010-59197294王老师CTEC2018B116吉林大学2018.6.111高温高压同步热分析仪10431-85167306王晓平JDCG2018-159中国热带农业科学院橡胶研究所2018.5.3033热重分析仪10898-23306988朱先生GZCQC1802HG0504738差示扫描量热仪1广西壮族自治区特种设备检验研究院2018.5.2825自动量热仪10771-5327022袁婷GXZC2018-G1-16371-RNZB表2上周热分析仪政府部门机构中标信息采购单位公告时间中标标的中标金额中标供应商项目编号山东农业大学2018.5.31热重分析仪27.55万元山东恒平生物科技有限公司SDSM2018-1092中国科学院金属研究所2018.5.29热机械疲劳试验系统466.18万元香港赛阁有限公司18CNIC-SH1692-011中国科学院金属研究所2018.5.29闪射法导热仪56.49万元耐驰科学仪器商贸(上海)有限公司18CNIC-SH1692-014北京科技大学2018.5.28差热热重分析仪49.40元北京晨时科仪商贸有限公司0873-1801HW5L0092中南大学2018.5.31超灵敏等温滴定微量热仪199.99万元湖南肯基仪器有限公司HNZJC2018-HW-184广州质量监督检测研究院2018.5.30热膨胀系数仪3.50万元广州领拓贸易有限公司CEITCL-GD-ZGHW-180505中国科学院过程工程研究所2018.5.31激光热扩散-导热分析仪121.60元北京瑞科中仪科技有限公司OITC-G180330426热电性能测试仪137.80元北京五洲东方科技发展有限公司膨胀系数测定仪38.30元北京冠普佳科技有限公司
  • 综述 | 石墨烯导热研究进展
    摘要:石墨烯具有目前已知材料中最高的热导率,在电子器件、信息技术、国防军工等领域具有良好的应用前景。石墨烯导热的理论和实验研究具有重要意义,在最近十年间取得了长足的发展。本文综述了石墨烯本征热导率的研究进展及应用现状。首先介绍应用于石墨烯热导率测量的微纳尺度传热技术,包括拉曼光谱法、悬空热桥法和时域热反射法。然后展示了石墨烯热导率的理论研究成果,并总结了石墨烯本征热导率的影响因素。随后介绍石墨烯在导热材料中的应用,包括高导热石墨烯膜、石墨烯纤维及石墨烯在热界面材料中的应用。最后对石墨烯导热研究的成果进行总结,提出目前石墨烯热传导研究中存在的机遇与挑战,并展望未来可能的发展方向。关键词:石墨烯;热导率;声子;热界面材料;悬空热桥法;尺寸效应1 引言石墨烯是具有单原子层厚度的二维材料,因为其独特的电学、光学、力学、热学性能而备受关注。相对于电学性质的研究,石墨烯的热学性质研究起步较晚。2008年,Balandin课题组用拉曼光谱法第一次测量了单层石墨烯的热导率,观察发现石墨烯热导率最高可达5300 W∙m−1∙K−1,高于石墨块体和金刚石,是已知材料中热导率的最高值,吸引了研究者的广泛关注。随着理论研究的深入和测量技术的进步,研究发现单层石墨烯具有高于石墨块体的热导率与其特殊的声子散射机制有关,成为验证和发展声子导热理论的重要研究对象。对石墨烯热导率的研究很快对石墨烯在导热领域的应用有所启发。随着石墨烯大规模制备技术的发展,基于氧化石墨烯方法制备的高导热石墨烯膜热导率可达~2000 W∙m−1∙K−1。高导热石墨烯膜的热导率与工业应用的高质量石墨化聚酰亚胺膜相当,且具有更低成本和更好的厚度可控性。另一方面,石墨烯作为二维导热填料,易于在高分子基体中构建三维导热网络,在热界面材料中具有良好应用前景。通过提高石墨烯在高分子基体中的分散性、构建三维石墨烯导热网络等方法,石墨烯填充的热界面复合材料热导率比聚合物产生数倍提高,并且填料比低于传统导热填料。石墨烯无论作为自支撑导热膜,还是作为热界面材料的导热填料,都将在下一代电子元件散热应用中发挥重要价值。本文综述了石墨烯热导率的测量方法、石墨烯热导率的研究结果以及石墨烯导热的应用。首先介绍石墨烯的三种测量方法:拉曼光谱法、悬空热桥法和时域热反射法。然后介绍石墨烯热导率的测量结果,包括其热导率的尺寸依赖、厚度依赖以及通过缺陷、晶粒大小等热导率调控方法。随后介绍石墨烯导热的应用,主要包括高导热石墨烯膜、石墨烯纤维及石墨烯导热填料在热界面材料中的应用。最后对石墨烯导热研究的发展进行展望。2 石墨烯热导率的测量方法由于石墨烯的厚度为纳米尺度,商用的测量设备(激光闪光法、平板热源法等)无法准确测量其热导率,需要采用微纳尺度热测量方法。常见的微纳尺度传热测量技术包括拉曼光谱法、悬空热桥法、3𝜔法、时域热反射法等几种。下面将重点介绍适用于石墨烯的热导率测量方法。2.1 拉曼光谱法单层石墨烯热导率是研究者最感兴趣的话题。2008年,Balandin课题组最早用拉曼光谱法测量了单层石墨烯的热导率。单层石墨烯由高定向热解石墨(HOPG)经过机械剥离法得到,悬空于刻有沟槽的SiNx/SiO2基底上,悬空长度为3 μm。测量时,选用拉曼光谱仪中波长为488 nm的激光同时作为热源和探测器,光斑大小为0.5–1 μm。激光对石墨烯产生加热作用导致石墨烯温度升高,而石墨烯拉曼光谱的G峰和2D峰随温度产生线性偏移,从而可以得到石墨烯的升温。利用热量在平面内径向扩散的傅里叶传热方程,可以得到石墨烯的平面方向内热导率。通过这一方法,测得石墨烯热导率测量结果为(5300 ± 480) W∙m−1∙K−1,是已知材料中热导率的最高值。拉曼光谱法第一次实现了单层石墨烯热导率的测量,但是其测量过程中存在较大的误差,导致不同测量结果存在差异:材料热导率由傅里叶传热方程计算得到,其中材料的吸收热量Q和升温ΔT两个参数都难以准确测量。首先,测量过程中采用了石墨块体的光吸收6%作为吸热计算的依据,与单层石墨烯在550 nm的光吸收率2.3%存在较大差异,导致测量结果可能被高估一倍左右。其次,升温ΔT通过石墨烯拉曼光谱G峰和2D峰的红移或反斯托克斯/斯托克斯峰强比计算得到,两者随温度变化率较小,需要较高的升温(ΔT ~ 50 K),导致难以准确测量特定温度下的热导率。基于拉曼光谱法,研究者不断改进测量技术,降低实验误差。在早期测量中由于石墨烯下方的SiNx基底热导率较低,约为5 W∙m−1∙K−1,在传热模型中将SiNx视为热沉存在一定误差。后来,Cai等通过在带孔的SiNx/SiO2薄膜表面蒸镀Au的方式,提高了石墨烯的接触热导,满足了热沉的边界条件,同时用功率计实时测量了石墨烯的吸收功率。同时,由于石墨烯覆盖在SiNx/SiO2薄膜上有孔和无孔的区域,可以分别测量悬空石墨烯和支撑石墨烯的热导率。张兴课题组使用双波长闪光拉曼方法,引入两束脉冲激光,周期性地加热样品并改变加热光与探测光的时间差,这样做可以将加热光和探测光的拉曼信号分开,为准确测量样品温度提供了新思路。在后续的研究中,拉曼光谱法也被应用于h-BN、MoS2、WS2等二维材料热导率的测量。2.2 悬空热桥法悬空热桥法是利用微纳加工方法制备微器件并测量纳米材料一维热输运的常用方法,多用于纳米线、纳米带、纳米管热导率的测量。微器件由两个SiNx薄膜组成,每个SiNx薄膜连接在6个SiNx悬臂上,并且沉积有Pt电极用作温度计,两个薄膜分别作为加热器(Heater)和传感器(Sensor),样品悬空加载薄膜上,电极通电后加热样品,通过电极电阻的变化测量样品的升温,从而计算热导率。Seol等最早将这一方法应用在石墨烯热导率的测量中,石墨烯被制备成宽度为1.5–3.2 μm,长度为9.5–12.5 μm的条带,覆盖在厚度为300 nm的SiO2悬臂上,两端连接在四个Au/Cr电极上作为温度计,测量得到SiO2衬底上的单层石墨烯热导率为600W∙m−1∙K−1。SiO2衬底上石墨烯热导率低于悬空石墨烯热导率及石墨热导率,是因为ZA声子和衬底间存在较强的声子散射。悬空热桥法的挑战在于如何将石墨烯悬空于微器件上,避免转移过程中出现石墨烯脱落、破碎的问题 。Li 课题组通过聚甲基丙烯酸甲酯(PMMA)保护转移法首先实现了少层石墨烯热导率的测量:首先将机械剥离法得到的少层石墨烯转移到SiO2/Si衬底上,然后旋涂PMMA作为保护层,用KOH溶液刻蚀SiO2并将PMMA/石墨烯转移至悬空热桥微器件上,再利用PMMA作为电子束光刻的掩膜版,通过O2等离子体将石墨烯刻蚀成指定大小的矩形进行测量。Shi课题组利用异丙醇提高了石墨烯的转移效率,测量了悬空双层石墨烯的热导率。Xu等进一步改良了实验工艺,通过“先转移,后制备悬空器件”的方法实现了单层石墨烯热导率的测量:首先将化学气相沉积(CVD)生长的单层石墨烯转移到SiNx衬底上,再利用电子束光刻和O2等离子体将石墨烯刻蚀成长度和宽度已知的条带,然后沉积Cr/Au在石墨烯两端作为电极,最后用KOH溶液刻蚀使其悬空。这一方法的优势在于避免了PMMA造成污染,但是对操作和工艺都提出了很高的要求。悬空热桥法也被应用于h-BN、MoS2、黑磷等二维材料热导率的测量。基于悬空热桥法,李保文课题组进一步发展了电子束自加热法,利用电子束照射样品产生加热,消除通电加热体系中界面热阻造成的误差。2.3 时域热反射法时域热反射法(Time-domain thermoreflectance,TDTR)是一种以飞秒激光为基础的泵浦-探测(pump-probe)技术,由Cahill课题组于2004年基于瞬态热反射方法提出,常用来测量材料的热导率和界面热导。在时域热反射法测量中,一束脉冲飞秒激光被偏振分束镜分为泵浦光和探测光,泵浦光对待测材料进行加热,探测光测量材料表面温度的变化。泵浦光和探测光之间的光程差通过位移台精确控制,并在每一个不同光程差的位置进行采样,得到材料表面温度随时间变化的曲线,这一曲线与材料的热性质有关。通过Feldman多层传热模型进行拟合,得到材料的热导率。实际测量中 通 常 在 材 料 表 面 沉 积 一 层 金 属 作 为 传 热 层(transducer),利用金属反射率(R)随温度(T)的变化关系(dR/dT),通过探测金属反射率的变化检测材料表面温度变化。时域热反射方法的优点在于能够同时测量材料沿c轴和平面方向的热导率,并且能够得到不同平均自由程声子对于热导率的贡献。Zhang等利用这一方法同时测量了石墨烯沿ab平面和c轴方向的热导率,发现石墨烯沿c轴方向的声子平均自由程在常温下可达100–200 nm,远高于分子动力学预测的结果。测量不同厚度的石墨烯(d = 24–410nm)表现出c轴方向热导率随厚度增加而增加的现象,常温下的热导率为0.5–6 W∙m−1∙K−1,并且随着厚度增加而趋近于石墨块体的c轴热导率(8 W∙m−1∙K−1) 。这一现象反映出,在常温下石墨烯c轴方向热导率是由声子-声子散射主导,为探讨石墨烯的传热机理提供了实验支撑。时域热反射方法的局限在于难以测量厚度较小的样品,这是因为当热流在穿透样品后到达基底,需要将基底与样品之间的界面热阻、基底的热导率作为未知数在传热模型中进行拟合,造成误差较大。对于块体石墨,时域热反射方法测量平面方向热导率为1900 ± 100 W∙m−1∙K−1,与Klemens的预测结果一致。对于厚度为194 nm的薄层石墨,测量热导率为1930 ± 1400 W∙m−1∙K−1,误差明显增大。Feser等通过调控光斑尺寸改变传热模型对石墨平面方向传热的敏感度,利用beam offset方法测量了HOPG热导率。Rodin等将频域热反射(FDTR)与beamoffset的方法结合起来,同时准确测量了HOPG的纵向和横向热导率。Chen课题组发展了无传热层(transducer less)的二维材料热导率测量方法,这种方法既可以采取FDTR频域扫描的测量方式,也可以与beam-offset方法结合,提高对平面方向热导率测量的准确度。这些测量方法为薄层材料热导率测量提供了可能的技术路径,即通过对待测样品的物理结构设计(transducerless)和传热模型设计(调控光斑尺寸与测量频率),选择性地增加对平面方向热导率的敏感度,使得即便在样品很薄、热流穿透的情况下,多引入的未知数在传热模型内具有较小的敏感度,从而实现少层/单层石墨烯平面方向热导率的测量。时域热反射法也被应用于黑磷、MoS2、WSe2等二维材料热导率的测量。基于时域热反射方法发展出频域热反射(FDTR)、two-tint、时间分辨磁光克尔效应(TR-MOKE)等测量方法以提高测量准确度。以上主要总结了石墨烯热导率的常用微纳尺度测量技术,包括拉曼光谱法、悬空热桥法和时域热反射法,不同方法的主要测量结果汇总于表1。表 1 石墨烯热导率测量主要研究结果值得注意的是,部分悬空热桥法测量的热导率显著偏低,是由于PMMA污染抑制了石墨烯声子散射。当样品厚度在微米尺度时,可通过激光闪光法进行测量,这种方法常用于块体石墨和湿化学方法制备的石墨烯薄膜,对于经过热处理还原和石墨化的石墨烯薄膜,激光闪光法测量热导率在1100–1940 W∙m−1∙K−1,热导率的差别主要来自石墨烯薄膜的制备工艺。受限于篇幅,我们将四种测量方法的示意图及主要原理汇总于图1,关于微纳尺度热测量的详细总结可参考相应综述文章。图 1 常见热测量方法示意图3 石墨烯热导率的研究进展石墨烯的热传导主要由声子贡献。和金刚石类似,石墨烯在平面方向由强化学键C―C键构成,并且由于碳原子较轻,具有极高的声速,从而在平面方向具有和金刚石相当的热导率(~2000W∙m−1∙K−1) 。关于石墨烯热传导的主要声子贡献来源,学界的认知随着研究的更新而发生变化。最早,人们预期石墨烯传热主要由纵向声学支(LA)和横向声学支(TA)贡献,这两支声子的振动平面都是沿石墨的ab平面方向。这样的预期是合理的,因为另一支横向声学支(ZA)声子的振动平面垂直于ab平面,而石墨烯作为单原子层材料,垂直平面的振动困难。而且ZA声子的色散关系是~ω2,在q →0时声速迅速减小为0,因而对石墨烯热导率几乎不产生贡献。后来,Lindsay等7通过对玻尔兹曼方程进行数值求解发现,由于单层石墨烯的二维材料特性,三声子散射中与ZA声子关联的过程受到抑制,这一规则被称为“选择定则(Selection rule)”。基于这一原因,ZA声子散射的相空间减小了60%;同时,考虑到ZA声子的数量较多,ZA声子实际成为了单层石墨烯中热导贡献最大的一支,占比约为70%。随着计算方法的进步,研究者对石墨烯中声子传导的理解逐步加深。Ruan课题组在考虑四声子散射的条件下计算了单层石墨烯的热导率,由于ZA声子数量多,导致由ZA声子参与的四声子散射过程多,通过求解玻尔兹曼输运方程(BTE)发现,ZA声子对于单层石墨烯热导率的贡献实际约为30%。Cao等通过分子动力学计算发现,考虑高阶声子散射时ZA声子对石墨烯热导率的贡献将降低。另外,第一性原理计算表明石墨烯中存在水动力学热输运和第二声现象,以及实验测量和分子动力学计算中发现石墨烯存在的热整流现象,都使得石墨烯的声子输运研究不断更新。下面针对理想的单层石墨烯单晶材料讨论其热导率的依赖关系。3.1 石墨烯热导率的厚度依赖石墨烯作为单原子层材料,表现出不同于石墨块体的声子学特征。很自然地产生一个问题,随着石墨烯的原子层数增加,石墨烯会以何种形式、在何种厚度表现出接近石墨块体的热学性质。前文Lindsay等的工作从计算角度给出了解释,在多层石墨烯和石墨中,三声子散射与原子间力常数的关系不同于单层石墨烯,导致选择定则不再适用,ZA声子的散射变大,热导率下降。这一趋势可以从图2a中明显观察到,当石墨烯的厚度从单原子变为双原子层时,ZA声子贡献的热导率大幅下降,石墨烯整体热导率降低。随着原子层数目增加,热导率持续下降。对于原子层数在5层及以上的石墨烯,其热导率已十分接近石墨块体。这一趋势也与Ghosh等对悬空石墨烯热导率的测量结果一致,在原子层数超过4层之后,石墨烯热导率接近块体石墨(图2c)。而对于放置在基底上的支撑石墨烯和上下均有基底的夹层石墨烯(Encased),热导率随层数变化没有明显规律,这主要是因为ZA声子与基底相互作用,对热导率的贡献低于悬空石墨烯,而ZA声子与基底相互作用的强度随原子层数增加而变化,导致热导率随层数变化表现出不同规律(不变或增大) 。研究石墨烯本征热导率仍需对少层及单层石墨烯热导率进行测量,对样品制备和实验测量都具有很大挑战。图 2 石墨烯热导率的尺寸效应3.2 石墨烯热导率的横向尺寸依赖由傅里叶传热定律,材料热导率,其中Cv为材料体积比热容,v为声子群速度,l为声子平均自由程。对于给定的温度,热容与声速均为定值,因而材料热导率主要由声子平均自由程决定。通常情况下,块体材料在三个维度上的尺寸都远大于声子平均自由程,声子为扩散输运,声子平均自由程主要由声子-声子散射确定,是材料固有的性质,表现出热导率与横向尺寸无关。但是对于石墨烯而言,由于制备待测样品的长度在微米级,与平面内声子平均自由程相当,存在弹道输运现象,表现出石墨烯的热导率与横向尺寸存在依赖关系。石墨烯平面方向声子平均自由程可通过计算得到。Nika等通过第一性原理计算分别对LA和TA声子求得Gruneisen参数,得到石墨烯平面方向声子平均自由程在10 μm左右,即石墨烯尺寸小于10 μm时会表现出明显的热导率随尺寸增加而增加现象(图2b)。后续计算表明,在考虑三声子过程和声子-边界散射角度的情况下,石墨烯热导率在横向尺寸L小于30 μm时遵循log(L)增加的规律,在横向尺寸为30 μm左右时达到最大值,并随横向尺寸增加而下降。检验计算结果需要对不同尺寸的单层石墨烯进行热导率测量,这对实验操作的精细度提出了极高要求。Xu等利用悬空热桥法测量了不同长度(300–9 μm)的单层石墨烯热导率,观察到其热导率随长度增加而单调增加。测量结果与分子动力学预测的热导率随长度以log(L)趋势增加的结果相符,证明了石墨烯作为二维材料的热性质(图2d)。但是作者也没有排除另外两种可能:(1)低频声子随尺寸增加而被激发,对传热贡献较大;(2)石墨烯尺寸增加改变三声子散射的相空间,影响选择定则7。由于石墨烯作为二维材料的特性,以及声子平均自由程较大、热导率较高,仍然需要进一步的理论和实验探究以深入挖掘石墨烯热导率随横向尺寸变化的物理原因。在实际应用的单晶及多晶石墨烯材料中,热导率的影响因素还包括晶粒尺寸、缺陷、同位素、化学修饰等,相关研究及综述已有报道。4 石墨烯导热的应用上一节中介绍了石墨烯具有本征的高热导率,从理论计算和实验测量中均得到了验证。上述实验测量中,研究者往往采用机械剥离法和CVD法制备石墨烯,这两种方法制备的样品具有质量高、可控性强的特点,适用于研究石墨烯的本征性质。但是,由于机械剥离法和CVD法制备石墨烯具有产量低、制备周期长、难以规模化等特点,不适用于石墨烯的宏量制备。相对应地,通过还原氧化石墨烯、电化学剥离等湿化学方法可以大批量制备石墨烯片,石墨烯片通过片层间的化学键作用可形成石墨烯膜、石墨烯纤维、石墨烯宏观体等三维结构,从而可实际应用于导热场景。4.1 高导热石墨烯膜的应用石墨烯薄膜可用作电子元件中的散热器,散热器通常贴合在易发热的电子元件表面,将热源产生的热量均匀分散。散热器通常由高热导率的材料制成,常见散热器有铜片、铝片、石墨片等。其中热导率最高、散热效果最好的是由聚酰亚胺薄膜经石墨化工艺得到的人工石墨导热膜,平面方向热导率可达700~1950 W∙m−1∙K−1, 厚度为10~100 μm,具有良好的导热效果,在过去很长一段时间内都是导热膜的最理想选择。在此背景之下,研究高导热石墨烯膜有两个重要意义,其一,是由于人工石墨膜成本较高,且高质量聚酰亚胺薄膜制备困难,业界希望高导热石墨烯膜能够作为替代方案。其二,是由于电子产品散热需求不断增加,新的散热方案不仅要求导热膜具有较高的热导率,也要求导热膜具有一定厚度,以提高平面方向的导热通量。在人工石墨膜中,由于聚酰亚胺分子取向度的原因,石墨化聚酰亚胺导热膜只有在厚度较小时才具有较高的热导率。而石墨烯导热膜则易于做成厚度较大的导热膜(~100 μm),在新型电子器件热管理系统中具有良好的应用前景。因此,石墨烯导热膜的研究也主要沿着两个方向,其一,是提高石墨烯导热膜的面内方向热导率,以接近或超过人工石墨膜的水平。其二,是提高石墨烯导热膜的厚度,扩大导热通量,同时保持良好的热传导性能。以下将从这两方面分别讨论。4.1.1 提高石墨烯膜热导率的关键技术高导热石墨烯薄膜的常见制备方法是还原氧化石墨烯。首先通过Hummers法得到氧化石墨烯(GO,graphene oxide)分散液,然后通过自然干燥、真空抽滤、电喷雾等方法得到自支撑的氧化石墨烯薄膜,并通过化学还原、热处理等方法得到还原氧化石墨烯(rGO)薄膜,最后通过高温石墨化提高结晶度,得到高导热石墨烯薄膜。影响高导热石墨烯膜热导率最重要的因素是组装成膜的石墨烯片的热导率,主要由氧化石墨烯的还原工艺决定。由于氧化石墨烯分散液的制备通常在强酸条件下进行,破坏石墨烯的平面结构,同时引入了环氧官能团,造成声子散射增加。氧化石墨烯的还原工艺对还原产物的结构、性能影响较大,因而需要选择合适的还原工艺制备石墨烯导热膜。氧化石墨烯膜在1000 ℃热处理后可以除去环氧、羟基、羰基等环氧官能团,但是石墨烯晶格缺陷的修复仍需更高温度。Shen等通过自然蒸干的方式制备了氧化石墨烯薄膜,并通过2000 ℃热处理的方式对氧化石墨烯薄膜进行石墨化,C/O原子比由石墨烯薄膜的2.9提高到石墨化后的73.1,X射线衍射(XRD)图谱上石墨烯薄膜11.1°峰完全消失,26.5°的峰宽缩窄,对应石墨(002)方向上原子层间距为0.33 nm,测量热导率为1100 W∙m−1∙K−1,热导率优于由膨胀石墨制备的石墨导热片。Xin等用电喷雾方法制备大尺寸氧化石墨烯薄膜并在2200 ℃下高温还原,得到热导率为1283 W∙m−1∙K−1的石墨烯导热膜,通过SEM截面图观察发现具有紧密的片层排列结构,且具有较好的柔性。通过拉曼光谱、XPS和XRD表征可以看出,2200 ℃为氧化石墨烯还原的最适宜温度,当还原温度更高时,石墨烯的电导率和热导率提升不再显著(图3)。图 3 高导热石墨烯膜的制备与表征影响高导热石墨烯膜热导率的第二个因素是石墨烯的片层尺寸。前文Xu等的工作表明,单层石墨烯的导热声子平均自由程可达~10 μm量级,选择大尺寸的石墨烯片层有利于减少声子与材料边界的散射,提高热导率。Kumar等用片层大小超过80 μm的石墨片作为原材料,经Hummers法制备得到平均片层大小约30 μm的氧化石墨烯分散液,并通过真空抽滤得到氧化石墨烯薄膜,经过57%的HI处理还原后得到石墨烯膜,测量得到强度达到77 MPa,热导率超过1390 W∙m−1∙K−1。Peng等用平均片层尺寸108 μm的GO制备了氧化石墨烯薄膜,并通过3000 ℃热处理还原,得到热导率高达1940 W∙m−1∙K−1的石墨烯薄膜。除了通过还原氧化石墨烯薄膜,石墨烯膜还可通过石墨烯分散液的方法制备。Teng等利用球磨方法将石墨块体剥离成石墨烯片层,并得到浓度为2.6 mg∙mL−1的石墨烯的N-甲基吡咯烷酮(NMP)分散液。再通过抽滤、烘干、2850℃热处理得到石墨烯薄膜,测量热导率为1529 W∙m−1∙K−1。一般认为,由石墨烯分散液制备石墨烯薄膜的最大优势在于保留了石墨烯的平面结构,使得薄膜具有比较高的本征热导率。这一优势从理论上讲具有合理性,但是仔细分析便可发现并非绝对:由于制备石墨烯分散液往往需要施加强机械力(研磨、球磨等),石墨烯分散液中的片层尺寸通常较小(小于1 μm);而且由于缺少含氧官能团,石墨烯片层间的相互作用较弱,存在着优劣势相互抵消的可能性,所以在实际应用前仍需要经过石墨化过程。我们认为,这一方法的优势在于易规模化、生产效率高。由于不存在片层相互作用,石墨烯分散液抽滤成膜速度较快(~几小时),易于连续抽滤;对比氧化石墨烯抽滤成膜,通常需要几天方可得到几十微米厚度的薄膜。同时,由于制备石墨烯分散液可由机械研磨完成,易于实现规模化、标准化,因而具有良好的工业应用前景。4.1.2 提高石墨烯膜厚度的关键技术制备较厚的石墨烯导热膜也是研究者关心的课题。理论上讲,增加石墨烯膜的厚度只需刮涂较厚的氧化石墨烯薄膜即可。但实际操作中存在如下问题:(1)刮涂厚膜的成膜质量不高。由于氧化石墨烯分散液的浓度较低(低于10% (w)),除氧化石墨烯外其余部分均为水,需要长时间蒸发。氧化石墨烯片层与水分子以氢键相互作用,蒸发时水分子逸出,使得氧化石墨烯片层之间通过氢键形成交联,在表面形成一层“奶皮”状的薄膜。这层薄膜使氧化石墨烯分散液内部的水分蒸发减慢,且导致氧化石墨烯片层取向不一致,降低成膜质量。(2)难以通过一步法得到厚膜。由于氧化石墨烯分散液浓度较低,无论刮涂、旋涂还是喷雾等方法都无法一次制备厚度为~100 μm的氧化石墨烯薄膜。Luo等研究发现,氧化石墨烯薄膜在蒸干成形后仍然可以在去离子水浸润的情况下相互粘接,出现这种现象是因为氧化石墨烯片层在水的作用下通过氢键彼此连接,使得氧化石墨烯薄膜可以像纸一样进行粘贴起来。Zhang等利用类似的方法将制备好的氧化石墨烯薄膜在水中溶胀并逐层粘贴,经过干燥、热压、石墨化、冷压之后,得到厚度为200 μm的超厚石墨烯薄膜,热导率为1224 W∙m−1∙K−1,通过红外摄像机实测散热效果优于铜、铝及薄层石墨烯导热膜(图4)。目前制备百微米厚度高导热石墨烯薄膜的研究相对较少,除了溶胀粘接的方法之外,还可以通过电加热、金属离子键合等方法实现氧化石墨烯薄膜的搭接,有望为制备百微米厚度高导热石墨烯膜提供新思路。石墨烯导热膜的部分研究成果总结于表2中。图 4 百微米厚度石墨烯导热膜的制备、表征与热性能测试表 2 石墨烯导热膜主要研究成果4.2 高导热石墨烯纤维的应用高导热石墨烯纤维是一种新型碳质纤维,通过石墨烯分散液经过湿法纺丝的方法有序组装而成。其主要优势在于同时具备良好的力学、电学和热学性能,并且可以通过湿法纺丝的方法大量制备,易于实现规模化,与纺织工艺结合,可达到千米级的产量。石墨烯纤维与石墨烯薄膜的原材料相似,通常为氧化石墨烯分散液或官能化的石墨烯分散液,因而其热导率的主要影响因素也具有共同之处,石墨烯的片层大小和石墨烯片层间的界面强度有重要作用。值得注意的是,Xin等的研究发现,组装石墨烯纤维时使用两种不同片层大小的石墨烯分散液进行级配具有最好的物理性能。他们将大片层(横向尺寸~23 μm)与小片层(横向尺寸~0.8 μm)的石墨烯分散液混合纺丝,热处理后得到了热导率高达1290 W∙m−1∙K−1的石墨烯纤维,导热性能优于单一组分制备的石墨烯纤维。大片层石墨烯为长平均自由程声子提供了传热空间,小片层石墨烯在大片层石墨烯之间起到键合作用,提高了石墨烯片层之间的界面致密度,从而提升了石墨烯纤维热导率。4.3 石墨烯在热界面材料中的应用石墨烯作为高导热材料,可作为导热填料应用于热界面材料(Thermal interface material,TIM)中。热界面材料是应用于芯片封装中的一种材料,主要作用是填充芯片中的空气间隙,起到给芯片提供力学支撑、电磁屏蔽、辅助散热的作用。传统的热界面材料使用的是填充有陶瓷、金属、碳材料等作为导热填料的树脂基复合材料,利用高分子材料的力学性能提供保护,通过添加导热填料提高散热能力。由于树脂的热导率非常低(小于0.5 W∙m−1∙K−1),并且商用的导热填料热导率也较低(氧化铝热导率~35 W∙m−1∙K−1),整体热界面材料的热导率多为1–10 W∙m−1∙K−1之间。研究者尝试将高导热的石墨烯作为导热填料,提高热界面材料的导热能力。以下重点介绍石墨烯增强树脂基复合材料的热导率的主要影响因素。4.3.1 分散性石墨烯片层作为填料,在基体中的分散性对复合材料的导热性能有至关重要的影响。传统的热界面材料中,导热填料在基体中的分散性良好,填充比例可以高达90% (w),即便导热填料为球形结构,也可以形成完整的导热网络,而导热网络的形成对于复合材料导热性能的提升至关重要。石墨烯作为片层状材料,在树脂基体中必须相互搭接,方可形成有效导热网络。为了实现这一目标,要求石墨烯在树脂基体中具有良好的分散性。常见的制备方法包括基于氧化石墨烯分散液和石墨烯分散液两种工艺路径。对于氧化石墨烯分散液,由于氧化石墨烯中存在大量羟基、羧基等基团,与极性溶剂相溶性较好,可以制备较高浓度的分散液(~30 mg∙mL−1),提高在树脂基体中的填充量。这种方法的主要挑战在于需要对氧化石墨烯进行还原以提高热导率。对于石墨烯分散液,由于保留了石墨烯的平面结构而具有相对较高的高热导率,但是由于官能化程度较低,石墨烯与树脂基体界面为范德华力搭接,存在分散性不佳的问题。提高分散性的一种方法是对石墨烯进行化学键修饰,通过化学反应给石墨烯引入特定基团,使石墨烯与高分子基体形成化学键,提高分散性。Guo等利用NH2-POSS与水合肼与氧化石墨烯共同作用,在氧化石墨烯表面接枝氨基并进行还原,得到化学修饰的石墨烯。将此种化学修饰石墨烯与聚酰亚胺基体混合,得到热导率为1.05 W∙m−1∙K−1的复合材料,固含量为5% (w),比聚酰亚胺热导率高4倍。Zhang等通过硅烷偶联剂ATBN在膨胀石墨表面引入氨基,提高了石墨烯与环氧树脂基体的键合强度,同时增强了环氧树脂固化的力学性能,得到热导率为3.8 W∙m−1∙K−1的石墨烯增强复合材料,比环氧树脂热导率高出19倍。这种方法的主要优势在于形成石墨烯与小分子之间的化学键,提高石墨烯与树脂基体间的界面强度。主要问题在于化学反应过程通常会引入缺陷,使得石墨烯自身的热导率下降。Shen等研究发现化学键改性的效果与石墨烯片层大小有关:当石墨烯片层尺寸小于临界尺寸(通常为微米级)时,化学键改性对热导率提升起主要作用;当石墨烯片层尺寸大于临界尺寸时,热导率主要由石墨烯自身决定。提高分散性的另一种方法是对石墨烯进行非化学键修饰,这种方法主要利用石墨烯与小分子之间形成π−π键共轭,并利用小分子上的其他基团与高分子基体形成相互作用。形成共轭π键并不需要破坏石墨烯的C―C键,从而减少了化学反应过程中缺陷的产生。Teng等利用含芘结构的高分子Py-PGMA对石墨烯在丙酮分散液中进行非化学键修饰,起到“桥梁”的作用:一方面芘结构与石墨烯形成共轭π键,另一方面PGMA中的环氧结构与环氧树脂基体在加热与固化剂作用下进行偶联,提高了石墨烯在环氧树脂基体中的分散度,得到了热导率为1.9 W∙m−1∙K−1的环氧树脂复合材料。另外还可以通过机械方法提高石墨烯与树脂基体间的界面强度,包括使用强力超声方法提高分散度、真空抽滤混合、热压等。总结来看,提高分散度往往意味着在保留石墨烯本征的高热导率与提高石墨烯和高分子基体的界面热导间做出权衡,如何定量分析两个因素对复合材料热导率的影响将是值得研究者关注的问题。4.3.2 三维导热网络石墨烯在树脂基体中形成导热网络是提高热界面材料热导率的重要条件。相比于传统热界面材料中填充球形氧化铝,石墨烯因为其二维材料的特性,比表面积大,更容易形成导热网络,因而在相同填料比的条件下更具优势。由于石墨烯片层具有较大的宽厚比,自发形成三维导热网络并不容易。一种方法是利用模板法通过CVD生长得到三维结构的石墨烯泡沫。这种方法以具有孔结构的材料为模板,通过CVD方法在表面沉积得到石墨烯,再通过刻蚀剂去除模板,得到石墨烯泡沫。Shi课题组及首先测量了CVD法生长的石墨烯泡沫的热导率,发现其热导率为1.7 W∙m−1∙K−1,而石墨烯固含量仅为0.45% (volume fraction,x)。后来,该课题组将石蜡灌封进石墨烯泡沫形成复合材料(图5a–b),测量得到其热导率为3.2 W∙m−1∙K−1,比石蜡自身的热导率提高了18倍,并且石墨烯的填充比仅为1.23 (x)。后续工作中,Kholmanov等在石墨烯泡沫中通过CVD法原位生长碳纳米管,在泡沫孔结构中形成导热网络(图5c–d),将丁四醇灌封后形成导热复合材料,热导率为4.1 W∙m−1∙K−1,比无碳纳米管填充的石墨烯泡沫-丁四醇复合材料热导率提高了1.8倍(图5d–e)。考虑到CVD法制备的石墨烯以少层石墨烯为主,这一方法在建立三维导热结构的最大程度减少了石墨烯的填充比,适用于超轻、超薄的精细结构导热应用。图 5 石墨烯泡沫作为三维导热网络的高导热聚合物基复合材料另一种方法是利用石墨烯片层自组装形成水凝胶,再通过冷冻干燥、冰模板法等方法形成三维的石墨烯宏观结构。水凝胶中石墨烯的含量可低至2.6% (w),其余部分均由水组成,因而由水凝胶形成的石墨烯三维结构可以有效降低石墨烯固含量。Wong课题组利用定向凝固的方法用大尺寸的氧化石墨烯液晶制备了氧化石墨烯三维结构,石墨烯片层受过冷度的影响形成纵向排列为主的定向结构。通过高温还原后灌封环氧树脂,得到复合材料的热导率为2.1W∙m−1∙K−1,比环氧树脂自身热导率提升超过12倍,并且填充比低至0.92% (x)。这种方法实际上是以石墨烯气凝胶为骨架,填充聚合物形成复合材料。其优势在于石墨烯气凝胶的制备工艺与调控手段已经很成熟,且比起CVD方法生长的石墨烯泡沫更易实现规模化制备。不足之处在于需要经过还原反应得到石墨烯,而氧化石墨烯制备过程中的缺陷不易完全修复。石墨烯填充的高导热聚合材料主要工作汇总于表3。表 3 石墨烯填充高导热复合材料主要研究成果从以上工作可以看出,通过气相沉积方法和湿化学方法均可得到三维石墨烯导热宏观结构,浸渍聚合物后可以得到高导热的三维石墨烯网络增强复合材料。其主要优势是用较低的填充量即可形成导热网络,而主要挑战在于石墨烯宏观结构要具有一定的强度,否则在与聚合物复合过程中容易出现碎裂。比起传统的混料过程,制备石墨烯泡沫与石墨烯气凝胶工艺相对复杂,如何实现工业生产中的实际应用仍需在工艺路线上继续创新。5 总结与展望自从单层石墨烯热导率被实验测得以来,石墨烯导热的研究取得了长足的发展。本文总结了石墨烯热导率的测量方法,重点介绍了拉曼光谱法、悬空热桥法和时域热反射法。探讨了石墨烯热导率的影响因素,并介绍了石墨烯在导热器件中的应用。在石墨烯导热研究方兴未艾的同时,我们注意到理论研究、实验测量和实际应用中仍然存在挑战。首先,是石墨烯高导热的声子学解释。2010年Lindsay提出ZA声子是单层石墨烯中热导率贡献最大的声子模,这一理论成功解释了单层石墨烯热导率高于石墨块体。而当考虑四声子散射时,ZA模声子的贡献又低于LA、TA。如何理解单原子层中的ZA声子振动、如何预测高阶声子散射对石墨烯热导的贡献,仍需要深入的理论计算提供支持。其次,是准确测量石墨烯热导率的长度依赖和厚度依赖。随着测量技术进步,拉曼光谱法和悬空热桥法能够准确测量单层石墨烯的热导率。但是如何实现指定厚度石墨烯的转移、如何实现大尺度悬空石墨烯样品的放置,仍具有一定的技术挑战。这一部分研究是最难、最有意义也最令人感兴趣的,预期未来微纳尺度传热测量方法将继续进步,对理论预测的结果进行验证。最后,是石墨烯导热应用的工艺因素。目前,石墨烯导热膜的热学性能和力学性能已经与石墨化聚酰亚胺膜相当,并在特定领域实现了商业应用。而在这一课题中,高导热石墨烯材料的制备与技术工艺密切相关。如何实现石墨烯片层高热导率与石墨烯片层紧密搭接的双目标优化,如何低成本大规模地构建石墨烯三维导热网络,要回答这些问题仍需对石墨烯制备工艺进行深入摸索与不断改良。随着石墨烯导热研究在理论计算和实验测量的不断深入,我们相信,高导热石墨烯材料将在电子器件、能源存储、生物医学、国防军工等领域发挥更大的价值。6 “石墨烯检测技术及应用进展”主题网络会议仪器信息网联合国家石墨烯产品质量监督检验中心、全国纳米技术标准化技术委员会低维纳米结构与性能工作组,将于2021年5月11日举办 “石墨烯检测技术及应用进展”主题网络会议。邀请业内专家以及厂商技术人员就石墨烯最新应用研究进展、检测技术、检测方法、质量评价体系及标准化等展开探讨,推动我国石墨烯产业健康发展。会议日程报告主题报告人单位绝缘衬底表面石墨烯晶圆生长研究进展王浩敏中国科学院上海微系统与信息技术研究所待定刘峥国家石墨烯产品质量监督检验中心待定谭平恒中国科学院半导体研究所石墨烯导热增强复合材料与热界面材料林正得中国科学院宁波材料技术与工程研究所二维半导体及异质结的生长与光电性能调控肖少庆江南大学石墨烯等低维纳米材料的标准化动态和展望丁荣全国纳米技术标准化技术委员会低维纳米结构与性能工作组更多报告邀请中… … 报名方式扫描下方二维码或点击以下链接即可进入报名页面。(会议链接:https://www.instrument.com.cn/webinar/meetings/Graphene2021/) 报名参会加入会议交流群,随时掌握会议动态
  • 坚持自主研发 立志成为热分析行业的佼佼者——“创新100”访南京大展检测仪器有限公司
    仪器信息网讯 为助力国产科学仪器发展,筛选和扶持一批优秀的科学仪器产品和企业,在中国仪器仪表行业协会、中国仪器仪表学会、北京科学仪器装备协作服务中心等单位的支持下,由仪器信息网主办、我要测网协办的“国产科学仪器腾飞行动”于2013年9月5日正式启动。秉承“国产科学仪器腾飞行动”宗旨,仪器信息网于2018年启动“国产科学仪器腾飞行动”之“创新100”项目,筛选、挖掘一批具备自主创新能力的中小仪器厂商,通过公益性的报道、走访、调研、视频、线下座谈会等方式展现其基本情况,在企业发展的关键时期“帮一把”。南京大展检测仪器有限公司(简称“南京大展”)是集科研、生产、销售于一体的高新技术型企业,专业从事差示扫描量热仪dsc、热重分析仪、同步热分析仪、差热分析仪、炭黑含量测试仪、炭黑分散度检测仪、导热仪和介电常数测试仪、热失重分析仪、高温差示扫描量热仪等仪器的研发、制造。日前,“创新100”项目组深入南京大展,探寻公司在热分析领域的成长轨迹。仪器信息网:请介绍公司创立的初衷和定位,历经了怎样的发展历程,有哪些关键的里程碑事件?南京大展:南京大展致力于成为国产热分析仪器的优秀制造商,秉承“以技术为核心、以质量为保证”的发展理念,为各行业客户提供卓越的热分析解决方案。自公司创立之初,年产量仅几十台仪器,如今已跃升至年产上千台的规模。在团队规模上,也从初创时期的数人小组,扩展至近20人的专业团队,且仍在持续壮大中。公司发展的历程中,有三个重要的里程碑事件。首先,2000年,南京大展成功推出第一台差示扫描量热仪,正式进入市场销售。随后,2001年,公司再接再厉,第一台热重分析仪也顺利投入市场,进一步丰富了产品线。2019年,南京大展再次创新,推出了新款炭黑含量测试仪,该仪器可一次性测试4个样品,极大地提升了实验效率。2022年,差热分析仪及同步热分析仪均进行升级。公司通过热学仪器的持续完善与研发创新,也得到了市场的验证。仪器信息网:南京大展聚焦于热分析仪器这一赛道,面临的国内外竞争对手也较多。您认为大展在技术、产品或营销层面有哪些独特竞争优势?南京大展:南京大展坚持自主研发和生产,所有产品外形设计、分析软件均获得了相应的资质认证,确保了仪器品质的稳定。与进口仪器相比,良好的售后服务也是客户选择南京大展的重要因素之一,从售前咨询、售中安装到售后维护,拥有完善的服务体系,任何一台售出仪器,一旦出现售后问题,都能迅速响应,提供及时、有效的解决方案。仪器信息网:南京大展创立至今取得了怎样的突出成绩,企业当前的规模,以及今年的业绩表现如何?南京大展:南京大展作为高新技术企业,拥有各项知识专利及著作权30余项。公司总部坐落于南京江宁区,服务过的客户群体数量已超10000家,公司积累了不同样品测试案例经验文档1000余份,覆盖了不同行业的不同类型的样品测试方法。随着公司的发展壮大,服务客户量也在持续攀升。仪器信息网:公司主打的产品或解决方案有哪些,重点聚焦哪些终端市场,或什么类型的客户?有哪些典型的应用案例,能否分享一些成功服务客户需求的故事?南京大展:主打的产品包括差示扫描量热仪、热重分析仪、同步热分析仪、导热仪、差热分析仪、炭黑含量测试仪以及炭黑分散度检测仪等。这些产品广泛应用于橡胶、塑料、化工、医药、建筑工程等领域,同时也深受高校和研究院所的青睐。在服务客户方面,南京大展与众多企业、高校和研究院建立了长期合作关系。在大型企业领域,成功服务了比亚迪、海信、潍坊特钢、中财集团、中石化等。在高校方面,与北京工业大学、上海交通大学、北京理工大学、湖南大学、浙江大学、沈阳理工大学等建立了合作关系。在研究院方面,与中国航天科工集团、中国石化安全工程研究院以及中国科学院等顶尖机构也有深入的合作。仪器信息网:南京大展下一步在市场和产品方面有何具体计划?南京大展:南京大展致力于服务更多行业客户,并积极拓展国际市场,不断缩小与进口仪器的差距,立志成为热分析行业的佼佼者。同时,也在加速新产品研发进程,计划在明年推出全新产品——导热系数测定仪。这款产品在性能、测量范围和温度控制等方面均有所突破。仪器信息网:您认为企业当前面临的最大困难或挑战是什么,希望借助“创新100”获得怎样的资源或帮助?南京大展:现在这个大经济环境背景下,很多企业都面临挑战和机遇,热分析行业属于相对冷门的的行业,可是国家不断对国产仪器出台各种优惠政策,带动国产仪器的发展和进步,希望南京大展能抓住这个机遇,乘风破浪,不断优化和提升产品,也希望借助仪器信息网这个平台,能够为国产热分析厂家带来产品的曝光和品牌宣传的机会,同时希望能够与其他优秀的企业进行交流、沟通和学习的机会,为企业的发展和进步,带来更多的机会和帮助。
  • 热分析仪国际厂商主流产品类别及型号汇总——上篇
    p  热分析仪器(Thermal Analyzer)是在程序控温和一定气氛条件下,测量物质的物理性质(span style="color: rgb(255, 0, 0) "力、热、电、声、光、磁及质量、尺寸等指标/span)随span style="color: rgb(255, 0, 0) "温度/span或span style="color: rgb(255, 0, 0) "时间/span变化关系的一大类仪器。可以与分析化学仪器和电镜仪器联用,并互为补充。几乎应用于所有的材料领域,是研究开发、工艺优化和质量管控必不可少的工具。/pp  strong国际上生产和营销热分析仪器的主流厂商有(排名不分先后)span style="color: rgb(255, 0, 0) "赫尔、日立高新、林赛斯、马尔文帕纳科、梅特勒-托利多、耐驰、PE、理学、新科、塞塔拉姆、岛津、TA/span等。/strong/ppstrong  涵盖的热分析仪类别有span style="color: rgb(255, 0, 0) "热重分析仪/span(span style="color: rgb(0, 176, 240) "TGA-Thermal Geometric Analyzer/span)、差span style="color: rgb(255, 0, 0) "热分析仪/span(span style="color: rgb(0, 176, 240) "DTA-Differential Thermal Analyzer/span)、span style="color: rgb(255, 0, 0) "差示扫描量热仪/span(span style="color: rgb(0, 176, 240) "DSC-Differential Scanning Calorimeter/span)、span style="color: rgb(255, 0, 0) "同步热分析仪/span(span style="color: rgb(0, 176, 240) "STA-Simultaneous Thermal Analyzer/span)、span style="color: rgb(255, 0, 0) "热机械分析仪/span(span style="color: rgb(0, 176, 240) "TMA-Thermomechanical Analyzer/span)、span style="color: rgb(255, 0, 0) "动态热机械分析仪/span(span style="color: rgb(0, 176, 240) "DMA-Dynamic Mechanical Analyzer/span)、span style="color: rgb(255, 0, 0) "热膨胀仪/span(span style="color: rgb(0, 176, 240) "DIL-Thermo Dilatometer/span)、span style="color: rgb(255, 0, 0) "反应量热仪/span(span style="color: rgb(0, 176, 240) "RC-Reaction Calorimeter/span)、span style="color: rgb(255, 0, 0) "导热系数测量仪/span(span style="color: rgb(0, 176, 240) "TCMA-Thermal Conductivity Measuring Apparatus/span)、span style="color: rgb(255, 0, 0) "等温滴定量热仪/span(span style="color: rgb(0, 176, 240) "ITC- Isothermal Titration Calorimeter/span)、span style="color: rgb(255, 0, 0) "熔点仪/span(span style="color: rgb(0, 176, 240) "MPA-Melting Point Apparatus/span)等。/strong/pp  下面,就让仪器信息网编辑带您领略一下这些厂商及其旗下产品的风采吧!/ppbr//pp style="text-align: center "strong上篇/strong/pp style="text-align: center "a href="http://www.instrument.com.cn/news/20180622/466329.shtml" target="_blank" title="" textvalue="(查阅下篇请点击)"strong(查阅下篇请点击)/strong/a/pp style="text-align: center "span style="color: rgb(31, 73, 125) "strong英国赫尔有限公司(HEL Limited-Hazard Evaluation Laboratory)/strong/span/pp  HEL公司的热分析仪主要为RC类产品。/pp style="text-align: center "strong全自动反应量热仪Simular/strong/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201806/insimg/6d781d8e-4161-4880-a547-73f653415cc7.jpg" title="HEL全自动反应量热仪Simular.jpg" width="300" height="300" border="0" hspace="0" vspace="0" style="width: 300px height: 300px "//pp  Simular反应量热仪是一款用于精确模拟和研究化学反应及生产过程中热效应的测量工具,标准规格容积为1L,从而在批量放大之前得到相应规模下的重要工艺数据,如安全性、可行性和优化性。此系统无需专业的实验操作及量热知识,通过内置的软件计算模块大大降低离线分析的必要性,真正实现量热数据随着实验进行同步采集及实时显示,无需校准。Simular是热危害安全专家及化学过程研发人员的一款理想工具。/pp style="text-align: center "strong低热惰性绝热加速量热仪PhiTEC II/strong/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201806/insimg/bc011896-5b4e-40b1-ba40-5e20eef6c9b3.jpg" title="HEL低热惰性绝热加速量热仪PhiTEC II.jpg" width="300" height="300" border="0" hspace="0" vspace="0" style="width: 300px height: 300px "//pp  PhiTEC II是由计算机精密控制的LowΦ低热惰性绝热加速量热仪,能模拟在大型化工厂真实生产条件下工业级化学反应釜的具体反应放热情况,样品量为0.5-100ml。该功能的实现主要得益于PhiTEC II可以得到低“phi(Φ)”因子条件下的反应相关数据。系统由计算机全自动控制,其特点有:可使用多种高压测试池,标配磁力搅拌,压力和温度数据同步采集,实时在线校准。预设的标准HWS实验程序可使测试更加快速高效地进行,大大降低实验成本。PhiTEC II可选配高压注射系统,用于实验过程中所需的进样操作,是在整个温升过程中准确监测反应动力学的理想解决方案。/pp style="text-align: center "a href="http://www.instrument.com.cn/netshow/SH101808/" target="_blank" title="赫尔"img src="http://img1.17img.cn/17img/images/201806/insimg/0a4df32c-bbdf-485f-bf78-4242aaefc2df.jpg" title="赫尔.jpg" width="300" height="120" border="0" hspace="0" vspace="0" style="width: 300px height: 120px "//a/ppspan style="color: rgb(31, 73, 125) "i赫尔公司简介:/i/span/ppspan style="color: rgb(31, 73, 125) "i  HEL—Hazard Evaluation Laboratory成立于1987年,总部设在伦敦,在美国、德国、意大利、印度设有分公司,在中国等30多个国家设有代表处,在全球其它地区通过代理商和合作伙伴开展业务和专业的技术服务工作。/i/span/ppspan style="color: rgb(31, 73, 125) "i  HEL是一家专注于研究及开发高端精确控制化学反应系统及化学热失控过程检测仪器的国际化公司。HEL致力于为工艺过程研发(R& D)提供专业化工具。目前,HEL仍然是全球首屈一指的过程工艺及安全专业咨询机构,同时已经发展成为一家致力于为客户提供专业化的化学反应过程筛选,工艺开发,过程优化,以及反应危害评估设备的国际集团企业。HEL提供产品和咨询服务的主要领域包括:制药及药物研发,精细化工,石油化工,以及其它与化学相关的行业。/i/span/ppspan style="color: rgb(31, 73, 125) "ibr//i/span/pp style="text-align: center "strongspan style="color: rgb(31, 73, 125) "日本日立高新技术公司(HITACHI)/span/strong/pp  日立高新公司的热分析仪主要有DSC、STA、TMA、DMA四类。/pp style="text-align: center "strong差示扫描量热仪DSC7000X/strong/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201806/insimg/d0f910fc-95fc-46f5-a293-efa3300c5d79.jpg" title="日立差示扫描量热仪DSC7000X.jpg" width="300" height="300" border="0" hspace="0" vspace="0" style="width: 300px height: 300px "//pp  差示扫描量热仪(DSC)的最新系列。通过DSC灵敏度、基线稳定性、温度跟踪性等的大幅提高和选配项的追加,实现自动化测量、光化学量热测量以及样品的实时观察等功能、具有丰富的扩展性能。适用于高分子材料、无机材料、医药品、食品等领域微量样品的熔融、玻璃化转变、结晶化、固化、比热容、纯度等测量。/pp style="text-align: center "strong热重-差热同步热分析仪STA7300/strong/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201806/insimg/be681bed-a91d-4cdf-a267-7140a8c3f2e9.jpg" title="日立热重-差热同步热分析仪STA7300.jpg" width="300" height="300" border="0" hspace="0" vspace="0" style="width: 300px height: 300px "//pp  热重-差热同步热分析仪(TG/DTA)产品群的最高性能机型。高灵敏度的水平差动式天平设计及先进的数字化控制技术,使得TG基线的稳定性得到提高。能够准确地检测出µ g级变化的TG/DTA。/pp style="text-align: center "strong热机械分析仪TMA7300/strong/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201806/insimg/820b0bc7-3cb5-416b-bbbf-29c1d4191131.jpg" title="日立热机械分析仪TMA7300.jpg" width="300" height="300" border="0" hspace="0" vspace="0" style="width: 300px height: 300px "//pp  与传统的TMA相比,灵敏度提高了2倍。由于采用无形状制约的全膨胀方式,因此无论是薄膜或碎片样品均可测定。另外,只须更换探针就可以完成压缩、针入、拉伸等不同的测量模式。多样选择的冷却系统,将便利性和高精度测定结合在一起。/pp style="text-align: center "strong动态热机械分析仪DMA7100/strong/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201806/insimg/bf544a9c-4fa1-489e-b2e7-c764341e2e2a.jpg" title="日立动态热机械分析仪DMA7100.jpg" width="300" height="300" border="0" hspace="0" vspace="0" style="width: 300px height: 300px "//pp  DMS7100具有高载荷能力,可测试样品为几乎所有的实用性材料,可测试模量涵盖103至1012Pa。/pp  特点:简易测定向导-以插图方式,对从测定条件设置到测定开始位置的一系列操作提供向导提示,新手也能轻松上手 Lissajous监控-标配了可以观察测量过程中的应力-应变关系的Lissajous监控功能 新型测定部-从人体工程学角度考虑,将结构改良,可轻松而可靠的进行装卸 样品安装-样品固定螺丝从以往的2根变为1根。夹头部分可沿着导轨移动,因此从结构上不易产生样品安装错误 低功耗全自动液氮冷却装置-将液氮消耗量降低30%(与本公司原有产品比较)的节能型冷却装置 Real Wiew-支持样品观察选配项。/pp style="text-align: center "a href="http://www.instrument.com.cn/netshow/SH100718/" target="_blank" title="日立高新"img src="http://img1.17img.cn/17img/images/201806/insimg/e491c215-2475-4b1d-ab69-793854311030.jpg" title="日立高新.jpg" width="300" height="120" border="0" hspace="0" vspace="0" style="width: 300px height: 120px "//a/ppispan style="color: rgb(31, 73, 125) "日立高新公司简介:/span/i/ppispan style="color: rgb(31, 73, 125) "  日立高新技术集团的企业理念是“以成为先端技术领域里提供高科技解决方案的全球第一为目标”。在这个理念的指引下,将电子装置系统、生命科学系统、信息电子系统、尖端产业材料系统等各个事业部门的“先端技术”推向世界的最前线。为了应对日新月异的技术革新和需求的多样化,达成事业的全球化,日立高新技术集团同时具有用先端技术开发制造新产品的制造功能和向全球提供优化解决方案的贸易公司机能,是一家在先端科技领域里向全世界更快、更好地提供产品和服务的全球性企业。日立高新的产品以高精度技术为基础,被广泛运用于“电子设备”“环境”“材料”“能源”等产业领域以及大学、研究机构的研究开发工作中,为创造更丰富的社会生活提供源源不断的支持。/span/i/ppispan style="color: rgb(31, 73, 125) "br//span/i/pp style="text-align: center "span style="color: rgb(31, 73, 125) "strong德国林赛斯股份有限公司(LINSEIS)/strong/spanbr//pp  林赛斯公司的热分析仪器主要有DTA、DSC、DIL、TMA、TGA、STA、TCMA等。/pp style="text-align: center "strong差热分析仪DTA PT1600/strong/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201806/insimg/068a410b-0632-4aef-b5a9-5d7a648645ba.jpg" title="林赛斯差热分析仪DTA PT1600.jpg" width="600" height="234" border="0" hspace="0" vspace="0" style="width: 600px height: 234px "//pp  Linseis DTA PT 1600具有最高的热灵敏度,很短的时间常数和无冷凝样品室。这些特点保证了仪器在整个寿命内优异的分辨率和基线稳定性,是材料开发、研发和质量控制一个不可或缺的工具。Linseis差热分析仪(DTA)采用最新的技术,仪器设计具有分辨率高、功能强大和易于使用的优点。系统的模块化设计概念可以通过可更换炉体实现-150° C到2400° C温度范围的测试,因此配置了多种不同类型的传感器和坩埚。该真空密封设计可以实现在10-5mbar的真空下或最纯净气氛的环境下焓和Cp(比热)的定量测定。此外,该系统常与质谱仪或红外光谱仪联用,以获得更多信息。/pp style="text-align: center "strong差示扫描量热仪DSC PT1600/strong/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201806/insimg/7f7f19fb-a9ad-4fb3-a377-e9b5a5cdde66.jpg" title="林赛斯差示扫描量热仪DSC PT1600.jpg"//pp  林赛斯高温DSC PT1600(HDSC/DTA)提供最高的热灵敏度,很短的时间常数和无冷凝样品室。这些特点保证了仪器在整个使用寿命内优异的分辨率和基线稳定性,是材料开发、研发和质量控制一个不可或缺的工具。HDSC和DTA系统的模块化设计概念可以通过可更换炉体实现-150° C到1750° C温度范围的测试。该真空密封设计可以实现在10-5mbar的真空下或最纯净气氛的环境下对焓和Cp(比热)的定量测定。该系统经过升级可以带有可选的自动进样器以及耦合到MS或FTIR。/pp style="text-align: center "strong热膨胀变形/相变测试仪L78 RITA/strong/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201806/insimg/f4e0eb68-2811-4e05-bf34-8c1e937ec15f.jpg" title="林赛斯热膨胀变形-相变测试仪L78 RITA.jpg"//pp  L78 RITA热膨胀变形/相变测试仪是特别适用于TTT、CHT和CCT曲线的测定。特殊感应炉体使加热和冷却速度超过2500° C/s。该仪器可在真空条件下,惰性、氧化、还原气氛中进行测量,温度范围从150℃(低温)到1000℃,或室温到1600℃。独特的加热和冷却装置能够非常快速的控制加热和冷却,速度可达2500℃/秒。通过可选的基座可以分析非金属样品。这种特殊的淬火/热膨胀相变仪是专为连续冷却/加热的CHT、CCT图以及等温线TTT-图的绘制设计。/pp style="text-align: center "strong热机械分析仪TMA PT1600/strongbr//pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201806/insimg/ed942fac-a392-4529-9e37-cbaaaecf8b8a.jpg" title="林赛斯热机械分析仪TMA PT1600.jpg"//pp  TMA PT1600热机械分析仪的设计保证了超高的精度,重复性和准确性。该系统构造可以实现在宽泛的温度范围内不同形状和大小样品的各种形变的实验,以满足所有的TMA的需要。通过内置的力/频率发生器,该系统可以执行静态或动态测量。主要用于测量:复合材料、玻璃、聚合物、陶瓷和金属。配备多种测量系统用于不同几何形状样品的测试,如纤维,棒,膜,柱状体。/pp style="text-align: center "strong热重分析仪TGA PT1600/strong/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201806/insimg/90aa8886-bd70-4fa0-bfa3-75d92b9e4d98.jpg" title="林赛斯热重分析仪TGA PT1600.jpg"//pp  Linseis TGA PT1600热重分析仪是一款性能优异热天平。可以用于重量高达5/25g的样品的测量。特制的炉体可以实现快速加热和冷却速率以及高精度的温度控制。该系统可任意配备一台耦合装置,用于逸出气体分析(EGA)。该仪器非常适用于复合材料热分析,热稳定性和氧化的研究。可以选择对DTA信号进行计算以获得有关吸热或放热反应等重要的附加信息。此外,它可以被用来作为温度校准的工具。/pp style="text-align: center "strong高压同步热分析仪STA HP/strong/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201806/insimg/b9a41a01-3406-45e5-af19-2c7006c1e4cf.jpg" title="林赛斯高压同步热分析仪STA HP.jpg"//pp  热重分析是一种在特定的气氛中测量样品质量随温度或时间变化的技术。该技术可用于材料组份的测定。同步TGA-DTA/DSC分析仪可同时测量材料在程序控制气氛中热流(DSC)和重量(TGA)随温度或时间的变化。该热重分析仪同时测量材料的两种特性,不仅提高了效率,而且便于结果的说明。可以分别获得无重量损失(例如,熔融和结晶)和涉及重量变化(例如,降解)的吸热和放热过程信息。LINSEIS High Pressure STA(高压同步热分析)性能卓越。该系统可以用于-170℃—1800℃范围内特定压力气氛下(最高至50/150bar)同时测定质量变化(TG)和热效应(HDSC)。本仪器是目前世界上唯一可用于压力环境下工作的STA。该产品的特点是高精度、高分辨率和长期基线漂移稳定。该STA PT系列的开发是为了满足高温和高压应用的挑战性要求。/pp style="text-align: center "strong激光热扩散/导热系数测试仪LFA1000/strong/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201806/insimg/85b35c38-6ea0-4e20-92d3-82a83d056b8c.jpg" title="林赛斯激光热扩散-导热系数测试仪LFA1000.jpg"//pp  Linseis LFA 1000激光导热系数测试仪采用模块化设计的最精密的热扩散系数,热导率和比热的测量仪器。可同时测量6个样品。可通过更换炉体使测量温度范围从-125—2800° C。可以选用多种不同的样品架,适用于固体,液体,熔体和炉渣。紧凑的设计使得硬件和电子元件分离,安装一个外罩后可以适应于核应用。/pp style="text-align: center "a href="http://www.instrument.com.cn/netshow/SH100688/" target="_blank" title="林赛斯"img src="http://img1.17img.cn/17img/images/201806/insimg/c0fefc0e-dede-4b14-864e-5935361c1482.jpg" title="林赛斯.jpg" width="300" height="120" border="0" hspace="0" vspace="0" style="width: 300px height: 120px "//a/ppispan style="color: rgb(31, 73, 125) "林赛斯公司简介:/span/i/ppispan style="color: rgb(31, 73, 125) "  自1957年以来,德国林赛斯在热分析和热物性领域不断推陈出新,提供了先进的设备,可靠的服务和完善的解决方案。/span/i/ppispan style="color: rgb(31, 73, 125) "  林赛斯始终坚持以产品创新和客户满意度为第一导向。“客户至上、品质第一、探索创新”的理念让林赛斯在前沿科研机构和工业企业中享负盛名。多年来,一直为热分析研究领域提供优质的仪器。/span/i/ppispan style="color: rgb(31, 73, 125) "  林赛斯热分析业务涉及多个应用领域的设备研发,包括在聚合物、化工、无机建筑材料和环境分析行业的产品性能检测。完全适用于固体、液体和熔液等不同状态样品的热物性分析。/span/i/ppispan style="color: rgb(31, 73, 125) "  林赛斯公司因技术领先而得以不断发展壮大,并以高标准、高精度和严要求来研发热分析仪器。创新驱动和高精确度使林赛斯成为热分析领域倍受客户信赖的一流生产商。/span/i/ppispan style="color: rgb(31, 73, 125) "  针对热分析仪器发展领域现存的前沿研究方向和高精准度需求,林赛斯不吝大力投资,始终坚持着“客户利益至上”的服务理念。/span/i/ppspan style="color: rgb(31, 73, 125) "br//span/pp style="text-align: center "strongspan style="color: rgb(31, 73, 125) "马尔文帕纳科公司(Malvern Panalytical)/span/strong/pp  马尔文帕纳科公司的热分析仪有DSC和ITC两类。/pp style="text-align: center "strong微量热差示扫描量热仪MicroCal PEAQ-DSC Automated/strong/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201806/insimg/f43827f2-3fac-4501-babb-f86efb84ecd5.jpg" title="马尔文帕纳科微量热差示扫描量热仪MicroCal PEAQ-DSC Automated.jpg" width="300" height="200" border="0" hspace="0" vspace="0" style="width: 300px height: 200px "//pp  MicroCal PEAQ-DSC Automated系统为自动化、集成式平台,样本量消耗低,可提供高通量、高灵敏度的蛋白质分析,提高生产力。适合无人值守操作,所有样本池的注入和清洁功能完全自动化。/pp style="text-align: center "strong微量热等温滴定量热仪MicroCal PEAQ-ITC Automated/strongbr//pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201806/insimg/3e8976df-ba4d-4f2a-a695-890d9ffc22db.jpg" title="马尔文帕纳科微量热等温滴定量热仪MicroCal PEAQ-ITC Automated.jpg" width="300" height="200" border="0" hspace="0" vspace="0" style="width: 300px height: 200px "//pp  MicroCal PEAQ-ITC Automated是一款可配置、低容量和高灵敏度的等温滴定量热仪,可以提供无人值守的操作便利性。可在一次实验中对所有结合参数进行直接、无标记的溶液内测量。其应用包括表征小分子、蛋白质、抗体、核酸、脂类和其它生物分子的分子间相互作用。它也可用于进行酶动力学测量。/pp style="text-align: center "a href="http://www.instrument.com.cn/netshow/SH100646/" target="_blank" title="马尔文帕纳科"img src="http://img1.17img.cn/17img/images/201806/insimg/4bf87df5-074d-4d09-8abf-180f4222c70c.jpg" title="马尔文帕纳科.jpg" width="300" height="120" border="0" hspace="0" vspace="0" style="width: 300px height: 120px "//a/ppspan style="color: rgb(31, 73, 125) "i马尔文帕纳科公司简介:/i/span/ppspan style="color: rgb(31, 73, 125) "i  马尔文帕纳科是材料表征领域强有力的竞争者和创新者,充分利用其在建筑材料、制药、金属、矿业及纳米材料等终端市场中的优势,通过化学、物理和结构分析,打造出更胜一筹的客户导向型解决方案和服务,从而产生切实的经济影响。马尔文帕纳科的目标是帮助客户开发更高质量的产品并使产品更快速地上市,并帮助其最大程度地提高工作效率和流程效率。/i/span/ppspan style="color: rgb(31, 73, 125) "i  Malvern Panalytical隶属于制造提高生产率的仪器和控制设备的思百吉集团。/i/span/ppspan style="color: rgb(31, 73, 125) "ibr//i/span/pp style="text-align: center "span style="color: rgb(31, 73, 125) "strong瑞士梅特勒-托利多国际有限公司(METTLER TOLEDO)/strong/span/pp  梅特勒-托利多公司的热分析仪有DSC、TGA、STA、TMA、DMA、MPA等。/pp style="text-align: center "strong差示扫描量热仪DSC 3+/strong/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201806/insimg/ca35dee3-6cba-4462-a21c-2271b658e24a.jpg" title="梅特勒-托利多差示扫描量热仪DSC 3+.png"//pp  由于采用了模块化设计,DSC 3+作为梅特勒-托利多热分析超越系列的一个组成部分,是人工或自动操作的最佳选择,适用于从生产到质量保证和技术研发。采用配有120对热电偶的创新型DSC传感器,可确保具有绝佳的灵敏度与分辨率。/pp  特点:令人惊叹的灵敏度–适合测量弱效应 出色的分辨率–可测量快速变化和几乎重叠的热效应 模块化概念–根据当前和未来需要量身打造的解决方案。/pp style="text-align: center "strong热重分析仪TGA 2 (LF)/strong/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201806/insimg/3e15732e-bb72-44bb-aba6-b89799bee357.jpg" title="梅特勒-托利多热重分析仪TGA 2 (LF).png"//pp  TGA 2 (LF)提供无缝的工作流程,它仅需要极少的用户操作便可启动常规分析。这款TGA仪器采用全球最佳的微量天平和超微量天平,这些天平提供的结果具有无与伦比的精确性。由于其模块化设计,TGA 2 (LF)成为需要简单操作和高样品处理率的工作场所中理想的人工或自动操作仪器。/pp style="text-align: center "strong同步热分析仪TGA/DSC 1/1600HT至尊型/strong/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201806/insimg/e1a228fc-9b58-4adc-9858-69eb514a89c8.jpg" title="梅特勒-托利多同步热分析仪TGA-DSC 1-1600HT至尊型.png"//pp  最新的高温热重分析仪TGA/DSC1/1600以其超强的测试性能和经久耐用的可靠性达到了几乎完美的程度。热重分析仪的核心是天平单元,TGA/DSC1/1600热重分析仪采用世界最好的梅特勒-托利多微量或超微量天平。并采用单盘SDTA传感器,可同时测量热流(模拟计算得到),这样可用金属标样的熔点来精确校准仪器。TGA/DSC1/1600热重分析仪可选配自动进样器、真空泵、MS质谱仪联用、FTIR红外仪联用、MS/FTIR联用、湿度分析仪联用,扩展了其强大的功能。由于采用模块化设计,高温热重分析仪TGA/DSC1/1600是理想的人工或自动操作仪器,可应用于从生产和质保到研发的广泛用途。/pp style="text-align: center "strong热机械分析仪TMA/SDTA 2+ HT/1600/strong/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201806/insimg/8ac0fea9-31c2-40f3-bc5b-0ec618a51091.jpg" title="梅特勒-托利多热机械分析仪TMA-SDTA 2+ HT-1600.png" width="300" height="300" border="0" hspace="0" vspace="0" style="width: 300px height: 300px "//pp  TMA/SDTA 2+由瑞士精密机械加工技术组装,由四种版本炉体系统优化而成,测试范围从室温到1600℃。TMA/SDTA 2+是目前市场是唯一能够在所有操作模式下非常接近样品来测试样品温度的仪器。/pp  特点:SDTA—用于同步热效应测量 One Click™ —一键操作提供高效的样品测量 纳米级分辨率—可测量极微小的形变 宽广的温度范围—从RT至1600° C。/pp style="text-align: center "strong动态热机械分析仪DMA/SDTA 1+/strong/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201806/insimg/00f92e11-ebfc-4d49-bd12-a2903cfc3906.jpg" title="梅特勒-托利多动态热机械分析仪DMA-SDTA 1+.png" width="300" height="300" border="0" hspace="0" vspace="0" style="width: 300px height: 300px "//pp  梅特勒-托利多DMA/SDTA 1+树立了市场新标准。与传统型DMA仪器相比,它在性能方面具有新的和独特的优点:频率范围最高可达1000Hz,可模拟材料行为,并可通过一台专用力传感器准确测定模量。/pp  特点:由于唯一同时测量位移与力,因此可非常准确地测定模量 力的范围广,从1mN至40N不等,因此可测量非常软和非常硬的样品 频率范围广,从0.001Hz至1000Hz,这意味着可在实际条件下进行测量,甚至在更高频率条件下更快速测量。/pp style="text-align: center "strong熔点仪MP90/strong/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201806/insimg/9f5133b9-7ab4-4dd2-bce4-773d270ed6fb.jpg" title="梅特勒-托利多熔点仪MP90.jpg" width="300" height="323" border="0" hspace="0" vspace="0" style="width: 300px height: 323px "//pp  针对多样化任务与最高处理率而优化。除了超越系列熔点系统所具有的诸多优点之外(如:One Click® 与录像),MP90还具有下列更多优点:可同步测量多达6个样品 更高的指标 升级的数据库 多种配件。/pp style="text-align: center "a href="http://www.instrument.com.cn/netshow/SH100270/" target="_blank" title="梅特勒-托利多"img src="http://img1.17img.cn/17img/images/201806/insimg/3bcd0648-90fc-441d-9275-632855116370.jpg" title="梅特勒-托利多.jpg" width="300" height="120" border="0" hspace="0" vspace="0" style="width: 300px height: 120px "//a/ppispan style="color: rgb(31, 73, 125) "梅特勒-托利多公司简介:/span/i/ppispan style="color: rgb(31, 73, 125) "  梅特勒-托利多,METTLER-TOLEDO(纽约证券交易所代码:MTD):世界上首台替代法单盘天平的发明者、全球排名前十的的精密仪器制造商、世界上最大的实验室、工业和食品零售业用称重设备制造商。同时,集团在几个运用称重相关技术的分析仪器行业中占据前三位的位置,并在应用于药物及化学聚合物研究开发自动化学反应系统市场上名列前茅。此外,集团也是最大的生产线及包装用金属检测机的制造和销售商。多年来,梅特勒-托利多始终致力于产品的开发和应用,在世界衡器及仪器领域方面一直拥有处于领先地位的新技术及新产品。除METTLER TOLEDO这一品牌外,集团还拥有梅特勒-托利多GARVENS,INGOLD,Thornton等一批著名商标。/span/i/ppispan style="color: rgb(31, 73, 125) "br//span/i/pp style="text-align: center "span style="color: rgb(31, 73, 125) "strong德国耐驰仪器制造有限公司(NETZSCH)/strong/span/pp  耐驰公司的热分析仪有DSC、STA、TGA、DIL、TMA、DMA、RC、TCMA等。/pp style="text-align: center "strong高温差示扫描量热仪DSC 404 F3 Pegasus® /strong/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201806/insimg/635c6d7e-3224-4e02-8f73-74de8efe173f.jpg" title="耐驰高温差示扫描量热仪DSC 404 F3 Pegasus® .jpg" width="300" height="330" border="0" hspace="0" vspace="0" style="width: 300px height: 330px "//pp  DSC 404 F3 Pegasus® 是NETZSCH F3系列产品的新成员之一。仪器根据热流型DSC的原理进行设计,遵循ISO 11357、ASTM E967、ASTM E 968、ASTM E 793、ASTM D 3895、ASTM D 3417、ASTM D 3418、DIN 51004、DIN 51007、DIN 53765等相关国际标准。/pp  对于热效应如相变温度和相变热焓的检测而言,NETZSCH DSC 404 F3 Pegasus® 是一款快速测量、可靠性好、性价比高的测试仪器。高真空密闭体系、多种可更换的传感器和炉体保证了测试结果在-150~2000° C之间真实可靠。/pp  多种可选的真空泵、气体流量控制系统和传感器能够根据客户应用领域的需求进行选配调整,以打造最佳的测试系统。DSC 404 F3 Pegasus® 对于高精度的物质表征而言是一款坚实耐用、易于操作的仪器。独树一帜的炉体设计保证了炉体优越的均温性能,热流从各个方向传到DSC传感器都非常均匀。/pp  传感器具有优异的灵敏度、极小的时间常数、良好的基线稳定性和重复性。因此相变温度测试和热焓测试的可信度非常高。提供多种可更换的DSC传感器,使得DSC测试可以在-150~1650° C之间进行,DTA传感器可以测试到2000° C。/pp  仪器拥有高真空密闭的系统设计、金属封装的MFC系统、可装配一到两个炉体的步进马达、最多配备20个样品的自动进样系统以及大量可选的坩埚类型,因此这款仪器几乎可以测试所有的样品,应用领域十分宽广。对于未来的各类应用,DSC 404 F3 Pegasus® 提供了大量的升级可能。/pp style="text-align: center "strong同步热分析仪STA 449 F5 Jupiter® /strong/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201806/insimg/8a2cf36b-1e9e-4c04-8c03-ebc704241b50.jpg" title="耐驰同步热分析仪STA 449 F5 Jupiter® .jpg" width="300" height="313" border="0" hspace="0" vspace="0" style="width: 300px height: 313px "//pp  配置完整-STA 449 F5 Jupiter® 为真空密闭结构,根据您的需求进行了特别的设计。仪器配置完整,软硬件功能设计齐全,适合于陶瓷,金属,无机物,建筑等各类应用领域。/pp  优异的同步热分析性能-天平系统可以提供足够大的称样量和测量范围(最大35g),同时具有高分辨率(0.1μg)和低漂移量(在μg幅度内),结合高灵敏度的DSC性能,可以在宽广的温度范围内进行各类样品测试。/pp  独具特色的组合-准确的TGA-DSC和大容量TGA-在室温到1600° C的宽广的温度范围内,STA449F5® 可以进行高精度与高重复性的TGA和DSC测量。TGA支持大样品量测试,坩埚最大体积可达5cm3。/pp  顶部装样-成熟的热天平设计方案-STA 449 F5 Jupiter® 采用的是顶部装样结构,在实验室中,这种设计长期以来已经成为天平测量的标准方式。原因很简单,这种设计结合了性能优越和操作简单两个特点。/pp style="text-align: center "strong热重分析仪TG 209 F3 Tarsus® /strong/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201806/insimg/2458f96f-0474-4bc2-9ad4-009a7ddc2cee.jpg" title="耐驰热重分析仪TG 209 F3 Tarsus® .jpg" width="300" height="227" border="0" hspace="0" vspace="0" style="width: 300px height: 227px "//pp  耐驰公司最新推出的热重分析仪TG 209 F3 Tarsus® ,与DSC 200 F3 Maia® 一起构成了高性价比的F3仪器系列,不仅适用于聚合物领域的质量检测,也适用于有机化学、药物、化妆品与食品领域的常规应用。TG 209 F3拥有0.1μg的超高称重解析度,温度范围为室温~1000° C,升温速率可在0K/min~200K/min范围内任意设定。由于测温热电偶直接接触到样品坩埚底部,保证了样品温度测量的准确性。仪器整体结构为垂直式装样系统,样品支架自动升降,不含吊丝或任何暴露而易损坏的部件,可靠性高,易于操作与维护。可选的c-DTA® 功能不仅适用于仪器的温度校正,而且在热重测量的同时提供了关于样品热效应(包括带质量变化的挥发、分解与不带质量变化的熔融、玻璃化转变等)的重要信息。TG 209 F3可选配包含20个样品位的自动进样器(ASC),不同的坩埚类型可在同一次自动进样过程中搭配使用。/pp style="text-align: center "strong热膨胀仪DIL 402 Expedis Select & Supreme/strong/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201806/insimg/2598ef3e-00fa-4373-af07-48773ff37211.jpg" title="耐驰热膨胀仪DIL 402 Expedis Select & Supreme.jpg" width="300" height="200" border="0" hspace="0" vspace="0" style="width: 300px height: 200px "//pp  耐驰公司新款热膨胀仪DIL 402 Expedis Select & Supreme集成了热膨胀测量领域的最尖端技术,为宽广应用领域内的专业级的应用而设计。DIL Expedis系列的所有型号均基于革命性的NanoEye测量系统,在测量范围与精度两方面达到了新的高度。这一仪器是市面上第一种支持调制力(振荡型载荷)的水平式膨胀仪,通过这一方式,在热膨胀仪与热机械分析仪(TMA)、动态热机械分析仪(DMA)之间架起了桥梁。Supreme版配置全面、功能强大,Select版则可灵活升级。这两个版本为研究开发、与专业化的工业应用量身定做。/pp style="text-align: center "strong热机械分析仪TMA 402 F1/F3 Hyperion® /strong/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201806/insimg/f4a00186-d74e-400a-bfd8-52ed3ae32501.jpg" title="耐驰热机械分析仪TMA 402 F1-F3 Hyperion® .jpg" width="300" height="300" border="0" hspace="0" vspace="0" style="width: 300px height: 300px "//pp  TMA402F1/F3 Hyperion® 为耐驰公司最新推出的热机械分析仪,可以有效地分析样品在一定负载下的热机械/热膨胀特性。最大样品长度30mm,最大作用力3N。内置的高精度力传感器保证了mN范围的精确可控的作用力。数字位移传感器(LVDT)--TMA 402 Hyperion® 的核心。这是一项经过时间考验的技术,同样也使用于热膨胀仪中。其精度极高,最低可测量纳米级的尺寸变化(数字灵敏度为0.125nm)。/pp style="text-align: center "strong超大力值动态热机械分析仪DMA EPLEXOR® 6000 N/strong/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201806/insimg/9767ed7b-3f5e-43a7-a930-098624eb83ff.jpg" title="耐驰超大力值动态热机械分析仪DMA EPLEXOR® 6000 N.jpg" width="300" height="248" border="0" hspace="0" vspace="0" style="width: 300px height: 248px "//pp  这些仪器可以提供更大的静态与动态力,范围从最大± 2000N至最大± 8000N,因此非常适合于研究坚硬的样品,以及大尺寸样品、甚至零部件的动态或静态机械属性。超大力值DMTA仪器拥有模块化的设计,可以提供相关附件,以执行如疲劳、热蓄积、爆裂、或滚动摩擦等特性的相关测试。这一系列的所有测试仪器均遵照如DIN 53513,DIN 53533,ISO 6721/1,ISO 6721/4,ISO 6721/5,ISO 6721/6,ISO 4664,ISO 4666/3,ISO 4666/4,ASTM D623,ASTM D4065,与ASTM D4473等相关标准。/pp style="text-align: center "strong加速量热仪ARC® 254/strong/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201806/insimg/3f3d21f5-424a-404a-8a7f-8f63339b716b.jpg" title="耐驰加速量热仪ARC® 254.jpg" width="300" height="441" border="0" hspace="0" vspace="0" style="width: 300px height: 441px "//pp  ARC 254能够在安全、可控的实验室环境下提供绝热量热数据。这一信息能够帮助研究者对相关的基础物理过程进行深入理解。以此为起点,可以开发多种多样的的操作安全系统与工艺过程,以降低反应体系发生危险的可能性。ARC 254同步测量温度与压力。密封的压力系统使得用户可以评估不同的气氛对系统的热稳定性的影响。在实验结束时,可以对气态反应产物进行分析,以帮助鉴别与理解相关的反应机理。ARC 254可以对小规模的尺度上进行建模,以模拟大尺度上的反应过程。测试原理为将待测材料在一定体积的测试腔中进行加热,直到检测到放热效应。样品处于绝热的环境中,没有能量损失,由量热仪测量与记录样品的温度与压力。/pp style="text-align: center "strong闪射法导热仪LFA 467 HT HyperFlash® /strong/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201806/insimg/8a7c0a0c-d8b8-4fc1-82b9-35ab22946b5e.jpg" title="耐驰闪射法导热仪LFA 467 HT HyperFlash® .jpg" width="300" height="256" border="0" hspace="0" vspace="0" style="width: 300px height: 256px "//pp  精确的热扩散系数与导热系数测试,覆盖RT~1250° C的宽广温度范围-耐驰公司新款闪射法导热仪LFA 467 HyperFlash® 基于成熟的LFA 467 HyperFlash® 平台构建,可在室温~1250° C之间进行精确的热扩散系数与导热系数测量。仪器使用创新的氙灯光源系统,拥有超长的光源寿命,在宽广的温度范围内提供了精确的导热测量,基本无耗材。/pp  ZoomOptics-优化检测范围,获取精确的测量结果-专利的ZoomOptics系统(专利号:DE 10 2012 106 955 B4 2014.04.03)优化了检测器的检测范围,消除了样品外缘的干扰信号,可大大提高测量结果的准确度。/pp  超高的数据采集速率(最高2MHz),极窄的光脉冲宽度(最小20μs以下),允许测量薄的高导热的材料-LFA 467 HyperFlash® 系列产品的数据采集速率提升到了2MHz。这一超高的数据采集速率同时体现在红外检测器,以及pulse mapping通道上。由此,可以有效地测试传热时间非常短的高导热薄层材料,如厚度0.3mm左右的金属薄片,或厚度30μm左右的聚合物薄膜。/pp  专利的pulse mapping系统将有限脉冲宽度效应、以及热损耗纳入计算(专利号:US7038209 B2 US20040079886 DE1024241)。/pp  真空密闭,保证气氛纯净,防止样品氧化-仪器内置全自动真空系统,在测量开始之前可进行自动抽真空与气氛置换操作,保证了气氛的纯净性。仪器另有扩展的真空接口,可连接到外部真空泵。铂炉为真空密闭设计,最快升温速率可达50K/min。/pp  通过四样品位+四组独立热电偶的设计,提高测样效率与测温准确性-仪器通过自动进样器(ASC),实现了在宽广温度范围内的高效测试。ASC包含四个样品位,可装载直径12.7mm的圆形样品,或10mm规格的圆形或方形样品。每个样品位都拥有独立的热电偶。这一设计极大地缩小了样品与测温点之间的温度偏差。/pp  体积小巧,高度集成化-LFA 467 HT HyperFlash® 是首款基于氙灯光源而能达到1250° C高温的LFA系统。仪器配备单一的炉体,带内置的自动进样器,在保持LFA 467 HyperFlash® 一贯的小巧体积的同时,覆盖了宽广的温度范围。即使在较高的温度下,有效的内部循环水冷系统仍能保证周围部件的温度处于安全范围之内,由此减少了红外检测器的液氮消耗量。/pp style="text-align: center "a href="http://www.instrument.com.cn/netshow/SH100162/" target="_blank" title="耐驰"img src="http://img1.17img.cn/17img/images/201806/insimg/3c26d3d7-ca6e-4c38-8b74-028a2977a3bf.jpg" title="耐驰.jpg" width="300" height="132" border="0" hspace="0" vspace="0" style="width: 300px height: 132px "//a/ppspan style="color: rgb(31, 73, 125) "i耐驰公司简介:/i/span/ppspan style="color: rgb(31, 73, 125) "i  德国耐驰仪器制造有限公司是世界著名的分析仪器制造厂商之一,其产品主要包括热分析仪器、导热分析仪与树脂固化监测仪三大类。在热分析仪器领域,耐驰公司拥有60余年的软、硬件研制及应用经验,其产品覆盖了热分析的各个分支领域,从差热、热重到热机械、热膨胀及热质热红联用,耐驰都能提供一系列不同型号不同配置的具有高精度高稳定性与优异性价比的仪器,温度范围上至高温2800℃,下及低温-180℃。耐驰树脂固化监测仪采用美国麻省理工大学技术,包括介电法、超声波法等一系列仪器,广泛应用于热固性树脂、油漆、涂料、复合材料与电子材料等领域的研发、质控与工艺优化。耐驰公司在导热分析仪领域同样处于世界领先地位,针对不同应用提供了一系列的导热测试仪,包括激光法、热流法、热板法、保护热流法与热线法等各种原理,其测试温度范围为-150℃~2000℃,导热率范围为0.005~1500W/(m· k)。作为驰名世界的仪器供应商,耐驰公司在全球二十余个国家设有分公司和代表处。/i/span/p
  • 北大杨林团队等人在Nature发文:首次揭示非均匀应变下声子谱扩展对导热的反常抑制现象
    纳米材料具备优异的力学特性,能够承受远超块体材料的应变,从而调节其物理/化学性能(如电子、光学、磁性、声子和催化活性)。基于力学应变工程,过去的研究优化设计了一系列前所未有的先进功能材料和器件,包括高迁移率芯片、高灵敏度光电探测器、高温超导体、和高性能太阳能电池以及电催化剂等等。尽管对基于应变调控电子输运性能和能带结构等方面进行了广泛研究,但由于单一施加应变梯度而不引入其他混淆因素(例如界面和缺陷)的困难,以及将纳米尺度热输运测量与原子尺度局域声子谱表征相结合的挑战,非均匀应变下的导热机制仍未被系统研究。这尤其令人沮丧,因为精确热管理被视为制约先进芯片和高端设备效率和寿命的关键瓶颈。针对这些挑战,北京大学工学院杨林研究员与北京大学物理学院高鹏教授、杜进隆高级工程师及西安交通大学岳圣瀛教授等人提出了实验探究非均匀应力对导热调控的新策略,他们揭示了均匀应力下不存在的,由应变梯度导致的独特声子谱扩展效应及其对导热的反常抑制现象。通过在自制的悬空微器件上弯曲单个硅纳米带(SiNRs)来诱发非均匀应变场,并利用具有亚纳米分辨率的基于扫描透射电子显微镜的电子能量损失谱(STEM-EELS)技术表征局域晶格振动谱,他们的研究结果显示,0.112%/nm应变梯度将导致热导率(κ)显著降低34±5%,这是先前文献中均匀应变下热导率调制结果的3倍以上(图1)。相关工作以“Suppressed thermal transport in silicon nanoribbons by inhomogeneous strain”为题发表于Nature。图1. 非均匀应力对硅纳米带导热的显著抑制现象。(a)实验测得的(实心符号)和理论模拟的(空心符号)结果表明,在均匀应变下,块体硅和硅纳米线的热导率基本保持不变,而弯曲硅纳米带的测量结果随着应变的增加急剧上升(半填充)。(b)基于悬空热桥微器件的热导率测试原理示意图。(c)高分辨透射电子显微镜显示弯曲硅纳米带的单晶特性。(d)实验测得的弯曲硅纳米带相较于无应力样品的热导率降低百分比为了揭示应变对声子传输的影响,直接测量弯曲硅纳米带的局域声子谱,并表征沿应变梯度声子模式的演变现象是非常必要的。与先前文献中观察到的在异质界面或缺陷周围的EELS峰移不同,运用同时具备亚纳米级空间分辨率和毫电子伏特(meV)能量分辨率的STEM-EELS技术,该工作首次表征了完全受非均匀应变调控的声子模式,揭示了应变梯度下奇特的声子谱扩展效应(图2)。图2. 表征受应变调控的局域声子谱。(a)基于STEM-EELS的局域声子谱表征技术示意图。带有弯折的弯曲硅纳米带HAADF图像(b)和EELS测量区域的放大视图(c)。(d)在不同位置(P1至P5)沿应变梯度测得的TA和TO声子模式的EELS谱。(e)弯曲硅纳米带的HAADF图像。(f)沿电子束移方向TA和TO声子模式的振动谱图。(g)在e中标记的区域沿应变梯度测得的EELS谱线与均匀应变下每个声子支具有的特定单一线条色散关系不同,不均匀应变的存在导致了在给定波矢处的声子频率分布区间(图3)。这种奇特的声子谱扩展效应增加了声子频率的多样性,以满足声子-声子散射的能量守恒约束,因此加速了声子-声子散射率并缩短了声子寿命,引发了一种均匀应变不存在的全新声子散射机制。图3. 声子谱扩展增强声子散射率。(a)受应变梯度调制的声子色散示意图。(b)左侧,硅在不同弹性应变下的声子色散。右侧,应变梯度为0.118% /nm下声子谱扩展引发的声子散射率,τsg−1通过开发跨微米-原子尺度的实验表征技术,并结合第一性原理的理论模拟,该工作为长期以来有关非均匀应变对声子传输影响的难题提供了关键线索。因此,这项研究不仅清楚地揭示了非均匀应变对固体导热的调制机理,而且为基于应变工程的功能性器件的创新设计提供了重要思路。例如,基于应变梯度引起的晶格热导率降低,与此前已证明的载流子迁移率增强之间的协同作用,为开发高性能的热电转换器件提供一种新颖策略。此外,基于非均匀应变调制热导率可实现功能性热开关器件,用于动态控制热通量。杨林和岳圣瀛是该论文的共同第一作者,杨林、高鹏、杜进隆是共同通讯作者。合作者包括东南大学陈云飞课题组、北京大学戴兆贺课题组、北京大学宋柏课题组和美国范德堡大学Deyu Li课题组。北京大学杨林课题组主要研究方向为功能性热材料和器件,包括先进微纳结构设计制造,极端尺度导热微观机理表征与调控,超高温储热技术研发,高性能热功能器件制备。研究成果以第一作者或通讯作者发表于Nature、Nature Nanotechnology、 Science Advances、Nature Communications、Nano Letters等国际顶级期刊。杨林曾入选2021年国家高层次海外青年人才计划,获得2019Nanoscale 年度精选热门文章、2020PCCP年度 精选热门文章等奖项。
  • 综述|高导热氮化硅陶瓷基板研究现状
    摘要:为了减少环境污染、打造绿色经济,高效地利用电力变得越来越重要。电力电子设备是实现这一目标的关键技术,已被广泛用于风力发电、混合动力汽车、LED 照明等领域。这也对电子器件中的散热基板提出了更高的要求,传统的陶瓷基板如 AlN、Al2O3、BeO 等的缺点也日益突出,如较低的理论热导率和较差的力学性能等,严重阻碍了其发展。相比于传统陶瓷基板材料,氮化硅陶瓷由于其优异的理论热导率和良好的力学性能而逐渐成为电子器件的主要散热材料。关键词:半导体 陶瓷基板 氮化硅 热导率然而,目前氮化硅陶瓷实际热导率还远远低于理论热导率的值,而且一些高热导率氮化硅陶瓷(>150 W/(mK))还处于实验室阶段。影响氮化硅陶瓷热导率的因素有晶格氧、晶相、晶界相等,其中氧原子因为在晶格中会发生固溶反应生成硅空位和造成晶格畸变,从而引起声子散射,降低氮化硅陶瓷热导率而成为主要因素。此外,晶型转变和晶轴取向也能在一定程度上影响氮化硅的热导率。如何实现氮化硅陶瓷基板的大规模生产也是一个不小的难题。现阶段,随着制备工艺的不断优化,氮化硅陶瓷实际热导率也在不断提高。为了降低晶格氧含量,首先在原料的选择上降低氧含量,一方面可选用含氧量比较少的 Si 粉作为起始原料,但是要避免在球磨的过程中引入氧杂质 另一方面,选用高纯度的 α-Si3N4 或者 β-Si3N4作为起始原料也能减少氧含量。其次选用适当的烧结助剂也能通过减少氧含量的方式提高热导率。目前使用较多的烧结助剂是 Y2O3-MgO,但是仍不可避免地引入了氧杂质,因此可以选用非氧化物烧结助剂来替换氧化物烧结助剂,如 YF3-MgO、MgF2-Y2O3、Y2Si4N6C-MgO、MgSiN2-YbF3 等在提高热导率方面也取得了非常不错的效果。研究发现通过加入碳来降低氧含量也能达到很好的效果,通过在原料粉体中掺杂一部分碳,使原料粉体在氮化、烧结时处于还原性较强的环境中,从而促进了氧的消除。此外,通过加入晶种和提高烧结温度等方式来促进晶型转变及通过外加磁场等方法使晶粒定向生长,都能在一定程度上提高热导率。为了满足电子器件的尺寸要求,流延成型成为大规模制备氮化硅陶瓷基板的关键技术。本文从影响热导率的主要因素入手,重点介绍了降低晶格氧含量、促进晶型转变及实现晶轴定向生长三种提高实际热导率的方法 然后,指出了流延成型是大规模制备高导热氮化硅陶瓷的关键,并分别从流延浆料的流动性、流延片和浆料的润湿性及稳定性等三方面进行了叙述 概述了目前常用的制备高导热氮化硅陶瓷的烧结工艺现状 最后,对未来氮化硅高导热陶瓷的研究方向进行了展望。关键词:半导体 陶瓷基板 氮化硅 热导率00引言随着集成电路工业的发展,电力电子器件技术正朝着高电压、大电流、大功率密度、小尺寸的方向发展。因此,高效的散热系统是高集成电路必不可少的一部分。这就使得基板材料既需要良好的机械可靠性,又需要较高的热导率。图 1 为电力电子模块基板及其开裂方式。研究人员对高导热系数陶瓷进行了大量的研究,其中具有高热导率的氮化铝(AlN)陶瓷(本征热导率约为320 W/(mK))被广泛用作电子器件的主要陶瓷基材。图 1 电力电子模块基板及其开裂方式但是,AlN 陶瓷的力学性能较差,如弯曲强度为 300~400 MPa,断裂韧性为 3~4 MPam1/2,导致氮化铝基板的使用寿命较短,使得它作为结构基板材料使用受到了限制。另外,Al2O3 陶瓷的理论热导率与实际热导率都很低,不适合应用于大规模集成电路。电子工业迫切希望找到具有良好力学性能的高导热基片材料,图 2 是几种陶瓷基板的强度与热导率的比较,因此,Si3N4 陶瓷成为人们关注的焦点。图 2 几种陶瓷基板的强度与热导率的比较与 AlN 和 Al2O3 陶瓷基板材料相比,Si3N4 具有一系列独特的优势。Si3N4 属于六方晶系,有 α、β 和 γ 三种晶相。Lightfoot 和 Haggerty 根据 Si3N4 结构提出氮化硅的理论热导率在200~300 W/(mK)。Hirosaki 等通过分子动力学的方法计算出 α-Si3N4 和 β-Si3N4 的理论热导率,发现Si3N4 的热导率沿 a 轴和 c 轴具有取向性,其中 α-Si3N4 单晶体沿 a轴和 c轴的理论热导率分别为105 W/(mK)、225W/(mK);β-Si3N4 单晶体沿a轴和c轴方向的理论热导率分别是 170 W/(mK)、450 W/(mK)。Xiang 等结合密度泛函理论和修正的 Debye-Callaway 模型预测了 γ-Si3N4 陶瓷也具有较高的热导率。同时 Si3N4 具有高强度、高硬度、高电阻率、良好的抗热震性、低介电损耗和低膨胀系数等特点,是一种理想的散热和封装材料。现阶段,将高热导率氮化硅陶瓷用于电子器件的基板材料仍是一大难题。目前,国外只有东芝、京瓷等少数公司能将氮化硅陶瓷基板商用化(如东芝的氮化硅基片(TSN-90)的热导率为 90 W/(mK))。近年来国内的一些研究机构和高校相继有了成果,北京中材人工晶体研究院成功研制出热导率为 80 W/(mK)、抗弯强度为 750 MPa、断裂韧性为 7.5MPam1/2 的 Si3N4 陶瓷基片材料,其已与东芝公司的商用氮化硅产品性能相近。中科院上硅所曾宇平研究员团队成功研制出平均热导率为 95 W/(mK),最高可达 120 W/(mK)且稳定性良好的氮化硅陶瓷。其尺寸为 120 mm×120 mm,厚度为 0.32 mm,而且外形尺寸能根据实际要求调整。目前我国的商用高导热 Si3N4 陶瓷基片与国外还是存在差距。因此,研发高导热的 Si3N4 陶瓷基片必将促进我国 IGBT(Insula-ted gate bipolar transistor)技术的大跨步发展,为步入新能源等高端领域实现点的突破。近年来氮化硅陶瓷基板材料的实际热导率不断提高,但与理论热导率仍有较大差距。目前,文献报道了提高氮化硅陶瓷热导率的方法,如降低晶格氧含量、促进晶型转变、实现晶粒定向生长等。本文阐述了如何提高氮化硅陶瓷的热导率和实现大规模生产的成型技术,重点概述了国内外高导热氮化硅陶瓷的研究进展。01晶格氧的影响氮化硅的主要传热机制是晶格振动,通过声子来传导热量。晶格振动并非是线性的,晶格间有着一定的耦合作用,声子间会发生碰撞,使声子的平均自由程减小。另外,Si3N4 晶体中的各种缺陷、杂质以及晶粒界面都会引起声子的散射,也等效于声子平均自由程减小,从而降低热导率。图 3 为氮化硅的微观结构。图 3 氮化硅烧结体的典型微观结构研究表明,在诸多晶格缺陷中,晶格氧是影响氮化硅陶瓷热导率的主要缺陷之一。氧原子在烧结的过程中会发生如下的固溶反应:2SiO2→ 2SiSi +4ON+VSi (1)反应中生成了硅空位,并且原子取代会使晶体产生一定的畸变,这些都会引起声子的散射,从而降低 Si3N4 晶体的热导率。Kitayama 等在晶格氧和晶界相两个方面对影响 Si3N4晶体热导率的因素进行了系统的研究,发现 Si3N4晶粒的尺寸会改变上述因素的影响程度,当晶粒尺寸小于 1μm时,晶格氧和晶界相的厚度都会成为影响热导率的主要因素 当晶粒尺寸大于 1μm 时,晶格氧是影响热导率的主要因素。而制备具有高热导率的氮化硅陶瓷,需要其具有大尺寸的晶粒,因此通过降低晶格氧含量来制得高热导率的氮化硅显得尤为关键。下面从原料的选择、烧结助剂的选择和制备过程中碳的还原等方面阐述降低晶格氧含量的有效方法。1.1 原料粉体选择为了降低氮化硅晶格中的氧含量,要先得从原料粉体上降低杂质氧的含量。目前有两种方法:一种是使用低含氧量的 Si 粉为原料,经过 Si 粉的氮化和重烧结两步工艺获得高致密、高导热的 Si3N4 陶瓷。将由 Si 粉和烧结助剂组成的 Si的致密体在氮气气氛中加热到 Si熔点(1414℃)附近的温度,使 Si 氮化后转变为多孔的 Si3N4 烧结体,再将氮化硅烧结体进一步加热到较高温度,使多孔的 Si3N4 烧结成致密的 Si3N4 陶瓷。另外一种是使用氧含量更低的高纯 α-Si3N4 粉进行烧结,或者直接用 β-Si3N4 进行烧结。日本的 Zhou、Zhu等以 Si 粉为原料,经过 SRBSN 工艺制备了一系列热导率超过 150W/(mK)的氮化硅陶瓷。高热导率的主要原因是相比于普通商用 α-Si3N4 粉末,Si 粉经氮化后具有较少的氧含量和杂质。Park 等研究了原料Si 粉的颗粒尺寸对氮化硅陶瓷热导率的影响,发现 Si 颗粒尺寸的减小能使氮化硅孔道变窄,有利于烧结过程中气孔的消除,进而得到致密度高的氮化硅陶瓷。研究表明,当 Si 粉减小到 1μm 后,氮化硅陶瓷的相对密度能达到 98%以上。但是在 SRBSN 这一工艺减小原料颗粒尺寸的过程中容易使原料表面发生氧化,增加了原料中晶格氧的含量。Guo等分别用 Si 粉和 α-Si3N4 为原料进行了对比试验。研究发现,以 Si 粉为原料经过氮化后能得到含氧量较低(0.36%,质量分数)的 Si3N4 粉末,通过无压烧结制得热导率为 66.5W/(mK)的氮化硅陶瓷。而在同样的条件下,以 α-Si3N4 为原料制备的氮化硅陶瓷,其热导率只有 56.8 W/(mK)。用高纯度的 α-Si3N4 粉末为原料,也能制得高热导率的氮化硅陶瓷。Duan 等以 α-Si3N4 为原料,制备了密度、导热系数、抗弯强度、断裂韧性和维氏硬度分别为 3.20 gcm-3 、60 W/(mK)、668 MPa、5.13 MPam1/2 和 15.06 GPa的Si3N4 陶瓷。Kim 等以 α-Si3N4为原料制备了热导率为78.8 W/(mK)的氮化硅陶瓷。刘幸丽等以不同配比的 β-Si3N4/α-Si3N4 粉末为起始原料,制备了热导率为108 W/(mK)、抗弯强度为 626 MPa的氮化硅陶瓷。结果表明:随着 β-Si3N4 粉末含量的增加,β-Si3N4柱状晶粒平均长径比的减小使得晶粒堆积密度减小,柱状晶体积分数相应增加,晶间相含量减少,热导率提高。彭萌萌等研究了粉体种类(β-Si3N4或 α-Si3N4)及 SPS 保温时间对氮化硅陶瓷热导率的影响。研究发现,采用 β-Si3N4粉体制备的氮化硅陶瓷的热导率比采用相同工艺以 α-Si3N4为粉体制备的氮化硅陶瓷高 15% 以上,达到了 105W/(mK)。不同原料制备的Si3N4材料的热导率比较见表1。表 1 不同原料制备的 Si3N4材料的热导率比较综合以上研究可发现,采用 Si 粉为原料制得的样品能达到很高的热导率,但是在研磨的过程中容易发生氧化,而且实验过程繁琐,耗时较长,不利于工业化生产 使用高纯度、低含氧量的 α-Si3N4粉末为原料时,由于原料本身纯度高,能制备出性能优异的氮化硅陶瓷,但是这样会导致成本增加,不利于大规模生产 虽然可以用 β-Si3N4 取代 α-Si3N4为原料,得到高热导率的氮化硅陶瓷,但是 β-Si3N4的棒状晶粒会阻碍晶粒重排,导致烧结物难以致密。1.2 烧结助剂选择Si3N4属于共价化合物,有着很小的自扩散系数,在烧结过程中依靠自身扩散很难形成致密化的晶体结构,因此添加合适的烧结助剂和优化烧结助剂配比能得到高热导率的氮化硅陶瓷。在高温时烧结助剂与Si3N4表面的 SiO2反应形成液相,最后形成晶界相。然而晶界相的热导率只有 0.7~1 W/(mK),这些晶界相极大地降低了氮化硅的热导率,而且一些氧化物烧结添加剂的引入会导致 Si3N4晶格氧含量增加,也会导致热导率降低。目前氮化硅陶瓷的烧结助剂种类繁多,包括各种稀土氧化物、镁化物、氟化物和它们所组成的复合烧结助剂。稀土元素由于具有很高的氧亲和力而常被用于从 Si3N4晶格中吸附氧。目前比较常用的是镁的氧化物和稀土元素的氧化物组成的混合烧结助剂。Jia 等在氮化硅陶瓷的烧结过程中添加复合烧结助剂 Y2O3-MgO,制备了热导率达到 64.4W/(mK)的氮化硅陶瓷。Go 等同样采用 Y2O3-MgO为烧结助剂,研究了烧结助剂 MgO 的粒度对氮化硅微观结构和热导率的影响。研究发现,加入较粗的 MgO 颗粒会导致烧结过程中液相成分分布不均匀,使富 MgO 区周围的 Si3N4晶粒优先长大,从而导致最终的 Si3N4陶瓷中大颗粒的 Si3N4晶粒的比例增大,热导率提高。然而,加入氧化物烧结助剂会不可避免地引入氧原子,因此为了降低晶格中的氧杂质,可以采用氧化物 + 非氧化物作为烧结助剂。Yang 等以 MgF2-Y2O3为烧结添加剂制备出性能良好的高导热氮化硅陶瓷,发现用 MgF2可以降低烧结过程中液相的粘度,加速颗粒重排,使粉料混合物能够在较低温度(1600℃)和较短时间(3 min)内实现致密化,而且低的液相粘度与高的 Si、N 原子比例有助于 Si3N4 的 α→β 相变和晶粒生长,从而提高 Si3N4 陶瓷的热导率。Hu 等分别以 MgF2-Y2O3和 MgO-Y2O3为烧结助剂进行了对比试验,并探究了烧结助剂的配比对热导率的影响。相比于 MgO-Y2O3,用 MgF2-Y2O3作为烧结助剂时 Si3N4陶瓷热导率提高了 19%,当添加量为 4%MgF2 -5%Y2O3时,能达到最高的热导率。Li 等以 Y2Si4N6C-MgO 代替 Y2O3 -MgO 作为烧结添加剂,通过引入氮和促进二氧化硅的消除,在第二相中形成了较高的氮氧比,导致在致密化的 Si3N4 试样中颗粒增大,晶格氧含量降低,Si3N4 -Si3N4 的连续性增加,使Si3N4 陶瓷的热导率由 92 W/(mK)提高到 120 W/(mK),提高了 30.4%。为了进一步提高液相中的氮氧比,降低晶格氧含量,通常还采用非氧化物作为烧结助剂。Lee 等研究了氧化物和非氧化物烧结添加剂对 Si3N4 的微观结构、导热系数和力学性能的影响。以 MgSiN2 -YbF3 为烧结添加剂,制备出导热系数为 101.5 W/(mK)、弯曲强度为822~916 MPa 的 Si3N4 陶瓷材料。经研究发现,相比于氧化物烧结添加剂,非氧化物 MgSiN2 和氟化物作为烧结添加剂能降低氮化硅的二次相和晶格氧含量,其中稀土氟化物能与 SiO2 反应生成 SiF4,而SiF4 的蒸发导致晶界相减少,同时也会导致晶界相 SiO2 还原,降低晶格氧含量,进而达到提高热导率的目的。不同烧结助剂制备的氮化硅陶瓷热导率比较见表 2,显微结构如图 4所示。表 2 不同烧结助剂制备的 Si3N4材料的热导率比较图 4 氧化物添加剂(a)MgO-Y2O3 和(d)MgO-Yb2O3、混合添加剂(b)MgSiN2 -Y2O3 和(e)MgSiN3 -Yb2O3 、非氧化物添加剂(c)MgSiN2 -YF3 和(f)Mg-SiN2 -YbF3 的微观结构目前主流的烧结助剂中稀土元素为 Y 和 Yb 的化合物,但是有些稀土元素并不能起到提高致密度的作用。Guo等分别用 ZrO2 -MgO-Y2O3和 Eu2O3 -MgO-Y2O3作为烧结助剂,制得了氮化硅陶瓷,经研究发现 Eu2O3 -MgO-Y2O3的加入反而抑制了氮化硅陶瓷的致密化。综合以上研究发现,相比于氧化物烧结助剂,非氧化物烧结助剂能额外提供氮原子,提高氮氧比,促进晶型转变,还能还原 SiO2 起到降低晶格氧含量、减少晶界相的作用。1.3 碳的还原前面提到的一些能高效降低晶格氧含量的烧结助剂,如Y2Si4N6C和 MgSiN2 等,无法从商业的渠道获得,这就给大规模生产造成了困扰,而且高温热处理也会导致高成本。因此,从工业应用的角度来看,开发简便、廉价的高导热 Si3N4 陶瓷的制备方法具有重要的意义。研究发现,在烧结过程中掺杂一定量的碳能起到还原氧杂质的作用,是一种降低晶格氧含量的有效方法。碳被广泛用作非氧化物陶瓷的烧结添加剂,其主要作用是去除非氧化物粉末表面的氧化物杂质。在此基础上,研究者发现少量碳的加入可以有效地降低 AlN 陶瓷的晶格氧含量,从而提高 AlN 陶瓷的热导率。同样地,在 Si3N4 陶瓷中引入碳也可以降低氧含量,主要是由于在氮化和后烧结过程中,适量的碳会起到非常明显的还原作用,能极大降低 SiO 的分压,增加晶间二次相的 N/O 原子比,从而形成双峰状显微结构,得到晶粒尺寸大、细长的氮化硅颗粒,提高氮化硅陶瓷的热导率。Li 等用 BN/石墨代替 BN 作为粉料底板后,氮化硅陶瓷的热导率提升了 40.7%。研究发现,即使 Si 粉经球磨后含氧量达到了 4.22%,氮化硅陶瓷的热导率依然能到达 121 W/(mK)。其原因主要是石墨具有较强的还原能力,在氮化的过程中通过促进 SiO2 的去除,改变二次相的化学成分,在烧结过程中进一步促进 SiO2 和 Y2Si3O3N4 二次相的消除,从而使产物生成较大的棒状晶粒,降低晶格氧含量,提高 Si3N4 -Si3N4 的连续性。研究表明,虽然掺杂了一部分碳,但是氮化硅的电阻率依然不变,然而最终的产物有很高的质量损失比(25.8%),增加了原料损失的成本。Li 等发现过量的石墨会与表面的 Si3N4 发生反应,这是导致氮化硅陶瓷具有较高质量损失比的关键因素。于是他们改进了制备工艺,采用两步气压烧结法,用 5%(摩尔分数) 碳掺杂 93%α-Si3N4 -2%Yb2O3 -5%MgO 的粉末混合物作为原料进行烧结实验。结果表明,碳的加入使 Si3N4 陶瓷的热导率从 102 W/(mK)提高到 128 W/(mK),提高了 25.5%。在第一步烧结过程中,碳热还原过程显著降低了氧含量,增加了晶间二次相的N/O比,在半成品 Si3N4样品中,有Y2Si4O7N2第二相出现,β-Si3N4 含量较高,棒状 β-Si3N4 晶粒较大。在第二步烧结过程中,第二相Y2Si4O7N2与碳反应生成了 YbSi3N5,极大降低了晶格氧含量,得到了较粗的棒状晶粒和更紧密的 Si3N4 -Si3N4 界面,使得 Si3N4 陶瓷的热导率有了显著的提升,所制备的Si3N4 的 SEM 图如图 5 所示。图 5 最后的Si3N4陶瓷样品抛光表面和等离子刻蚀表面的 SEM 显微照片:(a)SN 和(b)SNC 的低倍图像 (c)SN 和(d)SNC 的高倍图像在制备高导热氮化硅陶瓷中加入碳是降低晶格氧含量的有效方法,该方法对原料含氧量和烧结助剂的要求不高,降低了高导热氮化硅陶瓷的制备成本,随着技术的不断改进,有望在工业化生产中得到应用。02晶型转变、晶轴取向的影响2.1 晶型转变对热导率的影响及改进方法β-Si3N4因为结构上更加对称,其热导率要高于 α-Si3N4。在高温烧结氮化硅陶瓷的过程中,原料低温相 α-Si3N4会经过溶解-沉淀机制转变为高温相 β-Si3N4,但是在烧结过程中晶型转变并不完全,未转变的 α-Si3N4会极大地影响氮化硅陶瓷的热导率。为了促进晶型转变,得到更高的 β/(α + β)相比,目前比较常用的方法是:(1)在烧结制度上进行改变,如提高烧结温度和延长烧结时间及后续的热处理等 (2)在α-Si3N4中加入适量的 β-Si3N4棒状晶粒作为晶种。图6为加入晶种后氮化硅陶瓷的双模式组织分布。图 6 加入晶种后 β-Si3N4陶瓷的双模式组织分布Zhou 等探究了不同的烧结时间对氮化硅陶瓷热导率、弯曲强度、断裂韧性的影响。由表 3 可见,随着烧结时间的延长,氮化硅陶瓷的热导率逐渐升高。这主要是由于随着溶解沉淀过程的进行,晶粒不断长大,β-Si3N4含量不断增加,晶格氧含量降低。童文欣等研究了烧结温度对 Si3N4热导率的影响,发现经 1600℃烧结后的样品既含有 α 相又含有 β 相。在烧结温度升至 1700℃及 1800℃后,试样中只存在 β 相。随着烧结温度的升高,样品热导率呈现增加的趋势,可能是晶粒尺寸增大、液相含量降低以及液相在多晶界边缘处形成独立的“玻璃囊”现象所致。表 3 不同烧结时间下Si3N4的性能比较Zhu 等发现在烧结过程中加入 β-Si3N4作为晶种,能得到致密化程度和热导率更高的氮化硅陶瓷。为了进一步促进晶型转变,得到大尺寸的氮化硅晶粒,可以采用 β-Si3N4代替α-Si3N4为起始粉末制备高导热氮化硅陶瓷。梁振华等在原料中加入了 1%(质量分数)的棒状 β-Si3N4颗粒作为晶种,氮化硅陶瓷的热导率达到了 158 W/(mK)。刘幸丽等探究了不同配比的 β-Si3N4/α-Si3N4对氮化硅陶瓷热导率和力学性能的影响,结果表明,当原料中全是 β-Si3N4时氮化硅陶瓷有最高的热导率,达到了108 W/(mK),但是抗弯强度也降低。综合以上研究发现,适当提高烧结温度和延长烧结时间都能在一定程度上促进晶型转变 加入适量的 β-Si3N4晶种用来促进晶型转变可以在较短的时间内提高 β/(α+β)相比,使晶粒生长更加充分,得到高热导率的氮化硅陶瓷。2.2 晶轴取向对热导率的影响及改进方法由于 c 轴的生长速率大于 a 轴,各向异性生长导致了 β-Si3N4呈棒状,也导致了其物理性质的各向异性。前面叙述了氮化硅晶粒热导率具有各向异性的特征,β-Si3N4单晶体沿a 轴和c 轴的理论热导率分别为170 W/(mK)、450 W/(mK),因此在成型工艺中采取合适的方法可以实现氮化硅晶粒的定向排列,促进晶粒定向生长。目前能使晶粒定向生长的成型方法有流延成型、热压成型、注浆成型等。在外加强磁场的作用下,氮化硅晶体沿各晶轴具有比较明显的生长差异。这主要是由于氮化硅晶体沿各晶轴方向的磁化率差异,在外加强磁场的作用下,氮化硅晶体会受到力矩的作用,通过旋转一定的角度以便具有最小的磁化能,氮化硅晶粒旋转驱动能量表达式如下:Δχ = χc -χa,b (2) (3)式中:V 是粒子的体积,B 是外加磁场,μ0 是真空中的磁导率,χc 和 χa,b 分别表示氮化硅晶体沿 c 轴和 a,b 轴的磁化率,|Δχ |是晶体沿各晶轴方向的磁化率差值的绝对值。而粒子的热运动能量 U 的表达式为:U=3nN0kB (4)式中:n 是物质粒子的摩尔数,N0 是阿伏伽德罗常数,kB 是玻尔兹曼常数,T 是温度。当 ΔE 大于 U 时,粒子可以被磁场旋转。由图 7 可知,若 c 轴具有较高的磁化率,棒状粒子将与磁场平行排列 若 c 轴的磁化率较低,棒状粒子将垂直于磁场排列。图 7 磁场对晶格中六边形棒状粒子排列的影响示意图:(a)χc > χa,b (b) χc<χa,b 在弱磁性陶瓷成型过程中引入强磁场,可以制备出具有取向微结构的样品。由于氮化硅晶粒沿各轴的磁化率 χc<χa,b可以在旋转的水平磁场中通过注浆成型等技术制备具有 c 轴取向的氮化硅陶瓷,制备原理如图 8 所示。图 8 磁场中制备具有晶轴取向的陶瓷杨治刚等用凝胶注模成型取代了传统的注浆成型,在6T 纵向磁场中制备出具有沿 a 轴或 b 轴取向的织构化氮化硅陶瓷,并研究了烧结温度和保温时间对氮化硅陶瓷织构化的影响规律。结果表明,升高烧结温度促进了氮化硅陶瓷织构化,而延长烧结时间对织构化几乎没有影响。Liang 等在使用热压烧结制备氮化硅陶瓷时,发现氮化硅晶粒{0001}有沿 z 轴生长的迹象,有较强的取向性。这有利于制备高导热的氮化硅陶瓷。Zhu 等在 12T 的水平磁场中进行注浆成型,得到热导率为 170 W/(mK)的高导热氮化硅陶瓷。研究发现,在注浆成型的过程中模具以 5 r/min 的转速旋转形成一个旋转磁场,从而导致 β-Si3N4在凝结过程中具有与磁场垂直的 c 轴取向,c 轴取向系数为0.98。图9 为磁场和模具旋转对棒状氮化硅晶粒取向的影响。图 9 磁场和模具旋转对棒状氮化硅晶粒取向的影响现阶段,在大规模生产中很难实现氮化硅晶粒的取向生长,目前文献报道的定向生长的氮化硅陶瓷仅限于实验室阶段,需要通过合适的方法,在工业化生产中实现氮化硅晶粒的取向生长,这对制备高导热氮化硅陶瓷是极具应用前景的。03陶瓷基片制备工艺3.1 成型工艺由于电力电子器件的小型化,对氮化硅陶瓷基板材料的尺寸和厚度有了更加精细的要求,商业用途的氮化硅陶瓷基板的厚度范围是 0.3~0.6 mm。为了实现大规模生产氮化硅陶瓷基板材料,选择一种合适的成型方法显得尤为重要。目前制备氮化硅陶瓷的成型方法很多,如流延成型、热压成型、注浆成型、冷等静压成型等。但是为了同时满足小型化、精细化的尺寸要求和实现氮化硅晶粒的定向生长,流延成型无疑是实现这一目标的关键。图 10 是流延成型工艺的流程图,下面对流延成型制备氮化硅陶瓷基板材料进行叙述。图 10 流延成型工艺流程图流延成型的浆料是决定素坯性能最关键的因素,浆料包括粉体、溶剂、分散剂、粘结剂、增塑剂和其他添加剂,每一种成分对浆料的性能都有重要影响,并且浆料中的各个组分也会互相产生影响。虽然流延成型相比于其他成型工艺有着独特的优势,但是在实际操作中由于应力的释放机制不同,容易使流延片干燥时出现弯曲、开裂、起皱、厚薄不均匀等现象。为了制备出均匀稳定的流延浆料和干燥后光滑平整的流延片,在保持配方不变的情况下,需要注意浆料的润湿性、稳定性和坯片的厚度等因素。通过流延成型制备氮化硅流延片时,Otsuka 等和Chou 等分别提出了理论液体的流动模型,流延成型过程中流延片厚度 D 与各流延参数的关系如式(5)所示:(5)式中:α 表示湿坯干燥时厚度的收缩系数,浆料的粘度和均匀性对其影响较大 h 和 L 分别表示刮刀刀刃间隙的高度和长度 η 表示浆料的粘度 ΔF 表示料斗内压力,一般由浆料高度决定 v0 表示流延装置和支撑载体的相对速度。为了制备超薄的陶瓷基片,需要在保持浆料的粘度适中和均匀性良好的情况下,适当地调整刮刀间隙和保持浆料的液面高度不变。在有机流延成型中,一般使用共沸混合物作为溶剂,溶解效果更佳,这样就需要保证溶剂对粉体颗粒有很好的润湿性,这与溶剂的表面张力有关,可以用式(6)解释: (6)式中:θ 为润湿角 γsv、γsl、γlv 分别表示固-气、固-液、液-气的表面张力。由式(6)可知,γlv 越小,则 θ 越小,表明润湿性越好。润湿作用如图 11 所示。图 11 润湿作用示意图为了保证流延浆料均匀稳定,需要加入分散剂,其主要作用是使粉体颗粒表面易于润湿,降低粉体颗粒表面势能使之更易分散,并且使颗粒之间的势垒升高,从而使浆料稳定均匀。浆料的稳定性可以通过 DLVO 理论来描述:UT=UA+UR (7)式中:UA 为范德华引力势能 UR 为斥力势能。当 UR大于 UA时,浆料稳定。为了保证浆料的均匀稳定,分散剂的用量也要把控。若用量过多,则产生的粒子很容易粘结,不利于获得珠状颗粒 若用量过少,容易被分散成小液滴,单体不稳定,随着反应的进行,分散的液滴也可能凝结成块。Duan 等先采用流延成型工艺制备了微观结构均匀、相对密度达 56.08%的流延片,然后经过气压烧结得到了相对密度达 99%、热导率为 58 W/(mK)的氮化硅陶瓷。Zhang等采用流延成型工艺和气压烧结工艺制备了热导率为 81W/(mK)的致密氮化硅陶瓷。研究发现分散剂(PE)、粘结剂(PVB)、增塑剂/粘结剂的配比和固载量分别为 1.8%(质量分数)、8%(质量分数)、1.2、33%(体积分数)时能得到最高的热导率。张景贤等先通过流延成型制备 Si 的流延片,然后通过脱脂、氮化、烧结制备出热导率为 76 W/(mK)的氮化硅陶瓷。目前关于流延成型制备的氮化硅陶瓷热导率还不高,远低于文献报道的水平(>150 W/(mK)),通过改善工艺、优化各组分的配比,制备出均匀稳定、粘度适中、润湿性良好的浆料,是大规模制备高导热氮化硅陶瓷的关键。3.2 烧结工艺目前,制备氮化硅陶瓷的主要烧结方法有气压烧结、反应烧结重烧结、放电等离子烧结、热压烧结等,每种方法各有优劣,下面对一些常用的烧结方法进行简要概述。气压烧结(GPS)能在氮气的氛围中通过加压、加热使氮化硅迅速致密,促进 α→β 晶型的快速转变,有助于提高氮化硅陶瓷的热导率。Li 等以 α-Si3N4为原料,通过两步气压烧结法,制备了高导热的氮化硅陶瓷。先将混合粉末在1 MPa的氮气压力下加热到 1500℃ 烧结 8h,然后在 1900℃下烧结 12h,通过两步气压烧结的反应,极大促进了 α→β-Si3N4的晶型转变,氮化硅陶瓷的热导率达到了128 W/(mK)。Kim 等采用气压烧结的方法在 0.9 MPa 的氮气氛围中加热到 1900 ℃,保温 6h,最后得到的氮化硅陶瓷的热导率为 78.8 W/(mK)。Li 等用 Y2Si4N6C-MgO 为烧结助剂,采用气压烧结方法制备了热导率为 120 W/(mK)的氮化硅陶瓷。放电等离子烧结(SPS)工艺是一种实现压力场、温度场、电场共同作用的试样烧结方式,具有升温速率快、烧结温度低、烧结时间短等优点。Yang 等以 MgF2-Y2O3为烧结添加剂,采用 SPS 工艺制备了热导率为 76 W/(mK)、抗弯强度为 857.6 MPa、硬度为 14.9 GPa、断裂韧性为 7.7 MPam 1/2的Si3N4陶瓷。实验表明,由于外加电场的作用,颗粒之间容易滑动,有利于颗粒间的重排,从而得到大晶粒颗粒,使Si3N4在较低温度下达到较高的致密化。Hu 等通过 SPS工艺,以 MgF2-Y2O3和 MgO-Y2O3为烧结添加剂,制备了热导率为 82.5 W/(mK)、弯曲强度为(911±47) MPa、断裂韧性为(8.47±0.31) MPam1/2的Si3N4陶瓷材料。SPS 工艺还可以解决上文提到的以 β-Si3N4为原料制备氮化硅陶瓷难烧结致密的问题。彭萌萌等采用 SPS 工艺在 1600℃ 下烧结5 min,然后在 1900℃ 下保温 3h,获得了致密的氮化硅陶瓷,其热导率高达 105 W/(mK)。Liu 等以不同配比的β-Si3N4 /α-Si3N4粉末为起始原料,采用 SPS 和热处理工艺成功制得致密度高达 99%的高导热氮化硅陶瓷。烧结反应重烧结(SRBSN)由于是以 Si 粉为原料经过氮化得到多孔的 Si3N4 烧结体,进而再烧结形成致密的氮化硅陶瓷,比一般以商用 α-Si3N4为原料制备的氮化硅陶瓷具有更低的氧含量而受到研究者的青睐。Zhou 等采用 SRBSN工艺制备了热导率高达 177 W/(mK)的 Si3N4 陶瓷。结果表明,通过延长烧结时间,进一步降低晶格氧含量,可以获得更高的导热系数。此外,他们还研究了高导热性 Si3N4陶瓷的断裂行为,发现其具有较高的断裂韧性(11.2 MPam1/2 )。Zhou 等采用 SRBSN 工艺,以Y2O3和 MgO 为添加剂制备了Si3N4陶瓷。研究发现Y2O3 -MgO 添加剂的含量和烧结时间都会影响Si3N4的热导率。当添加剂的含量为 2%Y2O3 -4%MgO 时,在烧结 24 h 后,得到热导率为 156 W/(mK)的Si3N4陶瓷,相比于烧结时间 6h 得到的Si3N4陶瓷(128 W/(mK)),热导率提升了21%。Li 等采用 SRBSN 工艺,以Y2O3-MgO 为烧结助剂制备了热导率高达 121 W/(mK)的 Si3N4 陶瓷。采用其他烧结方式也能制备出高导热的氮化硅陶瓷。Jia 等采用超高压烧结制备出热导率为 64.6 W/(mK)的氮化硅陶瓷。Duan 等以 10%的 TiO2 -MgO 为烧结添加剂,在1780℃下低温无压烧结,制备了热导率为60 W/(mK)的氮化硅陶瓷。Lee 等采用热压烧结工艺制备出热导率为 101.5 W/(mK)的氮化硅陶瓷。综合上述研究可发现,虽然烧结方式不一样,但都可以制备出性能优异的氮化硅陶瓷。在实现氮化硅陶瓷大规模生产时,需要考虑成本、操作难易程度和生产周期等因素,因此找到一种快速、简便、低成本的烧结工艺是关键。04结语Si3N4 陶瓷由于其潜在的高导热性能和优异的力学性能,在大功率半导体器件领域越来越受欢迎,有望成为电子器件首选的陶瓷基板材料。但是有诸多限制其热导率的因素,如晶格缺陷、杂质元素、晶格氧含量、晶粒尺寸等,导致氮化硅陶瓷的实际热导率并不高。目前,就如何提高氮化硅的实际热导率从而实现大规模生产还存在一些待解决的问题:(1)原料粉体的颗粒尺寸对制备性能优异的氮化硅陶瓷有着重要影响,但是在减小粉末粒度的同时也会使颗粒表面发生氧化,引入额外的氧杂质,因此需要在减小粒度的同时避免氧杂质的渗入。(2)目前,烧结助剂的非氧化、多功能化成为研究的热点,选用合适的烧结助剂不仅能促进烧结,减少晶界相,还能降低晶格氧含量,促进晶型转变。因此,高效的、多功能的烧结助剂也是重要的研究方向。(3)为了降低晶格氧含量,在制备过程中加入具有还原性的碳能起到不错的效果。故在氮化或烧结中制造还原性的气氛或添加具有还原性的物质是将来研究的热点。(4)实现氮化硅基板的大规模生产,流延成型是一个不错的选择。可是由于有机物的影响,氮化硅基体的致密度不高,而且流延成型的氮化硅晶粒定向生长不明显,如何实现流延片中的氮化硅颗粒定向生长和提升其致密度必将成为研究热点。
  • 重磅!材料类国家重点实验室仪器配置清单出炉
    材料决定科技发展的上限,而国家重点实验室作为我国的科创“国家队”,无疑要承担起原始创新和关键核心技术领域突破的重任。现如今,我国材料科学领域的国家重点实验室一共有21个,分属于20个高校及科研院所,归属于教育部、工信部、中科院、河北省科技厅等4个部门。这些材料类的国家重点实验室涉及的研究领域有复合材料、高分子材料、超硬材料、粉末冶金材料、发光材料、光电材料、固体润滑材料、硅材料、金属材料、晶体材料、硅酸盐建筑材料、陶瓷材料等、信息功能材料、亚稳材料等,详情如图1所示:图1我国材料领域国家重点实验室名单详情做材料研究,仪器不仅不可或缺,对仪器的质量和创新的要求也更高。据了解,仅2020年上半年,就有20家国家重点实验室采购了近150类仪器设备。那么对于在材料领域耕耘的国家重点实验室,常用的主要仪器设备都有哪些呢?仪器信息网特汇总分析了上述实验室的主要仪器设备明细,现正式绘制并推出我国材料领域国家重点实验室仪器配置清单,供读者参考(注:文中标出的数字为该类仪器在对应国家重点实验室的型号种类数,并不是该类仪器的数量)。综合分析各大材料类国家重点实验室的仪器配置清单可以看出,分析材料微观形貌的扫描电子显微镜成为材料研究“国家队”当之无愧的左膀右臂。根据上述统计,有11家材料领域国家重点实验室配备有扫描电子显微镜。仅武汉理工大学材料复合新技术国家重点实验室就配置有5种不同型号的场发射扫描电子显微镜。紧随扫描电镜其后的最高频配置仪器是X射线衍射仪,上述统计中,共有10家国家重点实验室配置了该类仪器。另外,显微镜家族的其他成员也高频出现,扫描探针显微镜、原子力显微镜、透射电子显微镜在各国家重点实验室中的配置频率也分列3至5位。在材料领域国家重点实验室高频配置的仪器名单如下(点击仪器名称进入相关仪器专场了解详情):扫描电子显微镜X射线衍射仪扫描探针显微镜原子力显微镜透射电子显微镜试验机硬度计差示扫描量热仪傅里叶变换红外光谱仪同步热分析仪荧光光谱仪紫外可见分光光度计X射线光电子能谱仪电化学综合测试仪红外光谱仪激光导热仪激光粒度分析仪密度测定仪我国材料领域各国家重点实验室的仪器配置详情汇总如下:武汉理工大学材料复合新技术国家重点实验室仪器类型型号种类仪器类型型号种类仪器类型型号种类场发射扫描电子显微镜5惰性气体操作系统1脉冲激光沉积设备1扫描电子显微镜4惰性气体纯化仪(手套箱)1喷雾干燥机1X射线衍射仪2放电等离子烧结系统1喷雾热分解设备1放电等离子烧结装置2傅里叶变换红外光谱仪1热等静压烧结炉1燃料电池测定系统2高效液相/凝胶渗透色谱1热电效率测定装置1ARES高级扩展流变仪(电磁流变仪)1高性能双面对准光刻机1热压烧结炉1超高真空磁控溅射镀膜设备1高真空热压烧结炉1三维光学轮廓仪1超声波扫描显微镜1高真空双室镀膜设备1扫描探针显微镜1大尺寸高温化学气相沉积系统1核磁共振波谱仪1石英微天平分析仪1大尺寸块体材料热电性能快速扫描测试装置1霍尔效应测试仪1手套箱-蒸镀膜系统1大型熔体旋甩超快冷却系统1激光导热仪1双加热模式高温快速压力烧结系统1低温激光导热仪1晶体结构及物相分析系统1涂布机1低温真空探针台1精密平面磨削机1微波电磁参数测试系统1低压气压烧结炉1精密数控平面磨床1下降式高真空温梯炉1电输运性质测量系统1冷等静压机1氧氮分析仪1圆二色谱仪1原子层沉积系统1液态急冷非晶纳米晶制备系统1液相色谱-四级杆-飞行时间串联质谱仪1原位漫反射傅里叶变换红外光谱仪1武汉理工大学硅酸盐建筑材料国家重点实验室仪器类型型号种类仪器类型型号种类仪器类型型号种类X射线衍射仪2高速离心喷雾干燥机1扫描探针显微镜1付立叶红外光谱分析仪2固体核磁共振波谱仪1时间分辨荧光光谱仪1热常数分析仪2光电测试系统1水泥熟料烧成与性能检测系统13D喷釉打印机1光学薄膜分析系统1伺服液压沥青混合料动态测试系统1YAG宽光谱激光器1红外热像仪1台阶仪(轮廓仪)1比表面孔径分析仪1激光共聚焦显微镜1弯曲梁流变仪1玻璃强化飞秒激光加工及检测系统1激光共聚焦显微拉曼光谱仪1微机控制电子万能试验机1差示扫描量热仪1集料图像测量系统1维氏硬度计1场发射环境扫描电镜1挤出机械(真空压力系统)1析晶炉1超景深三维显微镜1结构扫描仪1旋转式压实仪1磁控溅射仪1控制温度吸附氧化化学仪1压汞仪1等离子电炉1沥青多功能试验仪1荧光性能测试系统1等离子体增强化学气相沉积设备1沥青多全自动组分分析仪1原子吸收光谱仪1低场核磁仪1纳米压痕仪1约束可调单轴温度-应力实验机1电化学综合测试仪1气体吸附分析仪1粘滞系数测试仪1动态剪切流变仪1气体吸附仪1紫外可见近红外分光光度计1动态力学分析仪1全自动混凝土冻融仪1自动热喷涂系统1动态疲劳试验加载系统1全自动显微硬度仪1高分辨三维X射线显微成像系统1非接触式高温显微镜综合分析仪1热分析系统1热重红外联用分析仪1吉林大学超硬材料国家重点实验室仪器类型型号种类仪器类型型号种类仪器类型型号种类600MHz超导傅立叶变换宽腔高功率固体核磁共振谱仪1高压超快光谱测试系统1两面顶Walker型6-8压机1X射线衍射仪1高压霍尔效应测试系统1六面顶液压机1场发射扫描电子显微镜1高压三级联拉曼光谱仪1热灯丝金刚石薄膜沉积系统1场发射透射电子显微镜1高压时间分辨光谱测试系统1热膨胀仪1单晶X射线衍射仪1高压荧光光谱分析系统1双束电子显微镜1刀具检测系统1高压原位低温磁电测量系统1显微共聚焦高压拉曼光谱仪1电输运测量型金刚石对顶砧压机1高压原位低温磁光实验测试系统1新一代大型超高压产生装置1电子探针1高压原位精密聚焦显微激光加温系统1真空镀膜设备1多面砧大腔体压机1高压阻抗测量系统1震动样品磁强计1高品级立方氮化硼膜外延生长实验平台1铰链式六面顶液压机1综合热分析仪1高温高压布里渊散射系统1金刚石刀具刃磨设备1综合物理测试系统1高温激光热导仪1宽波段显微光路高压真空红外光谱仪1中南大学粉末冶金国家重点实验室仪器类型型号种类仪器类型型号种类仪器类型型号种类真空热压机(炉)1碳/硫分析仪1真空粉末挤压成形机1真空气压烧结炉1自动比表面分析仪1金相实验室制样设备(4台件)4氮/氧分析仪1万能金相显微镜──图相分析仪1中国科学院上海硅酸盐研究所高性能陶瓷和超微结构国家重点实验室仪器类型型号种类仪器类型型号种类仪器类型型号种类全自动四站比表面积及孔径分析仪1高性能计算服务器扩充(开放共享型)1高分辨活体动物X射线断层扫描系统1全自动压汞仪1TEM低温样品杆、电和力性能原位测试样品杆1多功能生物分子成像仪1zeta电位/粒度分析仪1高真空温控型纳米热电多参量原位表征系统1多功能酶标仪1电化学综合工作站1虚拟仿真三维可视化软件及X射线源1流式细胞仪1离心/重力沉降粒度仪1化学气相沉积炉真空系统1低能离子减薄仪1台式扫描电镜1连续式氮化铝粉体合成炉1氩离子截面抛光仪1多功能烧结炉1复合型激光加热浮区晶体生长炉1超高温强度试验机1智能烧结炉1高通量材料合成/检测系统1卷对卷磁控溅射镀膜设备1超高温炉1连续氧化铝纤维制备设备1热蒸发、磁控溅射及靶材制备系统1结构功能一体化多层陶瓷复合材料制备装置1固态输运高温气相沉积系统1多功能复合表面改性系统1高真空气压烧结炉设备1活塞-圆筒高温超高压装置1电学性能测试综合装置1颗粒增强化学气相沉积系统1织构化新材料合成用强磁场设备1火焰环境高温拉伸/蠕变测试仪1MCR301流变仪1中科院兰州物理化学研究所固体润滑国家重点实验室仪器类型型号种类仪器类型型号种类仪器类型型号种类原子力显微镜4非接触式光学轮廓仪1石英晶体微天平分析仪1红外光谱仪2高分辨X射线衍射仪1双模式三维表面轮廓仪1扫描电子显微镜2高温原位材料结构分析系统1台阶膜厚仪1X荧光能谱仪1高压差示扫描量热仪1同步热分析仪1测量显微镜1激光动态散射仪1透射电子显微镜1电化学独立扫描隧道探针显微镜系统1气相色谱质谱联用仪1显微共焦拉曼光谱仪1多功能电子能谱仪1热分析仪1紫外可见分光分度计1非接触三维表面轮廓仪1扫描探针显微镜1紫外可见光谱仪1浙江大学硅材料国家重点实验室仪器类型型号种类仪器类型型号种类仪器类型型号种类扫描探针显微镜1原子力显微镜1傅里叶红外光谱仪1周期式脉冲电场激活烧结系统1热台偏光显微系统1微波光电导衰减寿命测试仪1振动样品磁强计1近场光学显微镜1变温高磁场测试系统1针尖增强半导体材料光谱测试系统1光度式椭圆偏振光谱仪1同步热分析仪1低维硅材料的原位扫描隧道显微分析系统1高真空热压烧结炉1铸造炉1热常数分析仪1等离子体增强化学气相沉积法1扫描电子显微镜1超高温井式冷壁气密罐式炉系统1磁控溅射镀膜系统1高分辨透射电子显微镜1角分辨X射线光电子能谱仪1深能级瞬态谱仪1西安交通大学金属材料强度国家重点实验室仪器类型型号种类仪器类型型号种类仪器类型型号种类疲劳试验机7冲击试验机1纳米显微力学探针系统1扫描电子显微镜6倒置金相显微镜1纳米压痕动态测量系统1电子拉伸试验机3电化学综合测试系统1纳米压痕仪1透射电子显微镜3电液伺服动静试验机1热重同步差热分析仪1X-射线衍射仪1傅里叶变换红外光谱仪1扫描电镜纳米力学测量系统1X-射线应力仪1固体薄膜zeta电位及粒度分析仪1双束显微镜1凹坑仪1光纤激光器1透射电镜1半导体特性分析系统及纳米探针台1聚集离子束联用纳米力学测量系统1微小力试验机1彩色3D激光显微镜1可控温拉伸机1荧光光谱仪1差热分析仪1纳米操纵仪1原子力显微镜1超高温持久蠕变试验机1纳米力学测量系统1真空沉积炉应力测试系1超声相控阵检测系统1纳米探针增强拉曼光谱仪1真空摩擦仪1真空三体磨损试验机1东华大学纤维材料改性国家重点实验室仪器类型型号种类仪器类型型号种类仪器类型型号种类双折射检查仪9超景深显微镜1热台偏光显微镜1密度测定仪6超声波细胞粉碎机1热重红外联用仪1声速取向测定仪6单丝纱线强伸度仪1熔喷无纺布机1宝石显微镜5电化学综合测试仪1扫描电子显微镜1差示扫描量热仪5电脑平板硫化机1色差仪1平板硫化机4电子万能材料试验机1上吹薄膜机组1微型注塑机4纺丝机1数字式电导仪1傅立叶红外光谱仪3复丝纱线强伸度仪1数字式粘度计1接触角测定仪3干燥牵伸定型一体化设备1双料筒毛细管流变仪1结晶速度测量仪3高聚物扭矩流变仪1双螺杆纺丝机1偏振显微镜3高温荷软测试仪1双螺杆挤出机1微型共混仪3高阻仪1双折射检查仪J1半自动压力成型机2光谱分析仪1双组份复合纺丝机1玻璃软化温度实验装置2恒温震荡器1水份测定仪1差热分析仪2激光粒度分析仪1塑料成型注射机1差热膨胀仪2接触角测量仪1塑料成型注塑机1单丝纤维强伸度仪2解偏振测试仪1塑料硬度计1复丝氨纶弹性仪2介电常数仪1酸度计1固体密度仪2金相镶嵌机1同步热分析仪1光学解偏振仪2进口紫外分光光度仪1微电脑相位差测试仪1光学轮廓仪2静电纺丝机1微粒粒径测试仪1缕纱测长机2抗热震性试验机1微喷射式自由成型系统1凝胶渗透色谱仪2可塑性测定仪1微型机控制纤维缠绕机1强力测试仪2快速水份测定仪1微型台式双螺杆挤出机1热重分析仪2拉挤成型机1纤维细度仪1熔融指数测试仪2冷场发射扫描电子显微镜1氙灯耐气候老化试验箱1熔体流动速率测试仪2冷冻超薄切片机1显微热分析仪1湿法纺丝机2冷离子体改性处理仪1显微硬度计1数码偏光显微镜2冷热台显微镜1橡胶密炼机1梯温析晶炉实验装置2炼胶机1肖氏硬度计1万能材料试验机2流变仪1小型共混挤出机及注塑机1万能制样机2洛氏硬度计1小型挤出机1微控电子万能试验机2毛细管流变仪1旋转式粘度计1织物厚度仪2密度测定仪1旋转粘度计1智能液体密度仪2纳米粒度与电位分析仪1压差法水分测定仪1自动电位滴定仪2凝胶色谱仪1荧光/磷光/发光光度计1X射线光电子能谱仪1偏振数码显微镜1荧光显微镜1摆锤冲击仪1平板导热仪1原子力显微镜1表面处理仪1平行牵伸机1匀胶机1玻璃应力与退火实验仪1全数字化核磁共振谱仪1粘度仪1布洛维硬度计1全液压四缸精密注塑机1振动样品磁强计1布氏硬度计1热变形维卡软化点温度仪1浊度分析仪1材料烧结温度测定仪1热导仪1紫外分光光度仪1材料应力与退火温度测定仪1热机械分析仪1紫外光刻机1缠绕机1热老化试验箱1紫外可见分光光度计1场发射透射电子显微镜1热膨胀仪1紫外可见近红外分光光度计1自动比表面和空隙度分析仪1北京科技大学新金属材料国家重点实验室仪器类型型号种类仪器类型型号种类仪器类型型号种类高温原位疲劳试验机2多功能X射线衍射仪1热力模拟试验机1磁质伸缩参数自动测量仪1腐蚀疲劳裂痕测试系统1蠕变持久试验机1材料疲劳试验机1高频疲劳试验机1软磁材料磁性测量系统1差扫描热分析仪1高温电子万能试验机1扫描电镜1场发射高分辨透射电子显微镜1高温硬度计1双光束紫外可见分光光度计1超声波材料弹性常数测量仪1高真空单辊旋淬系统1物理模拟试验机1单室磁控溅射系统1局部电极三维原子探针系统1雾化沉积成形系统1电子探针显微分析仪1聚焦离子束场发射扫描双束电镜1显微维氏硬度计1定向凝固及区域熔炼定向凝固系统1纳米力学探针1永磁不同温度特性测量系统1清华大学新型陶瓷与精细工艺国家重点实验室仪器类型型号种类仪器类型型号种类仪器类型型号种类矢量网络分析仪4傅里叶变换红外光谱仪1切/磨/抛体机1X射线衍射仪3高温力学试验机(动态)1全光纤太赫兹时域光谱仪1Zeta电位仪2高温力学试验机(静态)1软磁材料B-H分析仪1高温综合热分析仪2高温热分析仪1三维扫描测振仪1精密阻抗分析仪2高温热机械分析仪1扫描探针显微镜1BET比表面分析仪1高温热膨胀仪1射频辉光放电光谱仪1S参数网络分析仪1光电子光谱仪1数字光学显微镜1半导体特性分析系统1激光导热仪1台阶仪1场发射扫描电子显微镜1激光粒度仪1太赫兹时域光谱仪1沉降粒度仪1介电频谱温谱分析系统1铁电分析仪1冲击试验机1精密器件图示分析仪1椭偏仪1等离子清洗仪1聚焦离子束显微镜1维氏硬度计1低温综合物性测试系统1宽频介电阻抗谱仪1稳态瞬态荧光光谱仪1多功能离子减薄仪1拉曼光谱仪1显微硬度计1多功能氩离子刻蚀/镀膜仪1离子溅射/蒸碳镀膜仪1压电材料多场测试系统1多样品温谱频谱测试系统1离子溅射镀膜仪1压汞仪1真密度仪1紫外/可见/近红外光谱仪1燕山大学亚稳材料制备技术与科学国家重点实验室仪器类型型号种类仪器类型型号种类仪器类型型号种类扫描电子显微镜2离子溅射仪1傅立叶红外/拉曼光谱仪1X射线荧光光谱仪1热膨胀分析仪1环境气氛球差校正场发射透射电子显微镜1X射线衍射仪1北京化工大学有机无机复合材料国家重点实验室仪器类型型号种类仪器类型型号种类仪器类型型号种类平板硫化机3辊筒式磨耗机1双辊炼塑机1双辊开炼机2可在线多段取料双螺杆挤出机1水平/垂直燃烧测定仪1万能材料试验机2冷等离子体表面改性装置1无转子硫化仪1密炼机1门尼黏度测定仪1橡胶动态压缩疲劳机1阿克隆磨耗机1盘式硫化仪1橡胶复合挤出机1超高阻计1气透性仪1橡胶滚动阻力测定仪1单螺杆挤出机1三辊研磨机1橡胶加工分析仪1动态力学分析仪1数字式直流电桥1橡胶摩擦磨损测定仪1氧指数测定仪1橡胶曲挠疲劳机1华南理工大学制浆造纸工程国家重点实验室仪器类型型号种类仪器类型型号种类仪器类型型号种类离子色谱仪2动态渗透分析仪1生化分析仪1纳米微射流均质机2高压液相色谱仪1实验室用压力盘磨机1气相色谱-质谱联用仪2光学性能测试仪1数字式纸页撕裂度仪1液相色谱仪2光泽度测定仪1双夹头耐折度仪1L&W厚度仪1红外光谱仪1透湿性测试仪1L&W白度仪1环压强度测定仪1弯曲挺度测定仪1L&W抗张强度仪1火焰原子吸收光谱仪1微波合成仪1L&W耐破度测定仪1激光粒度分析仪1微细胶粘物分析系统1L&W撕裂度仪1近红外光谱仪1卧式湿扩张强度测试仪1L&W透气度仪1卡伯值自动检测仪1纤维筛分仪1L&W压溃测试仪1颗粒电荷分析仪1压差法气体渗透仪1lGT印刷适性仪1可勃吸水性测试仪1压光机1比表面积孔径分析仪1快速卤素水分测试仪1研究级体视显微镜1表面抗水动态渗透分析仪1拉伸压缩材料试验机1研究级正置显微镜1别克式平滑度仪1量热仪1音盆杨氏模量与损耗因数测定系统1残余油墨/白度测定仪1零距抗张强度测试仪1印刷适性仪1残余油墨测定仪1流动电位法ZETA电位仪1荧光光谱仪1层间结合强度仪1纳米纤维膜性能测试仪1元素分析仪1超高压纳米均质机1耐折度仪1原子力显微镜1尘埃匀度仪1凝胶成像系统1粘胶物测定仪1粗糙度和透气度测定仪1凝胶色谱仪1纸张表面粗糙度测定仪1蛋白纯化系统1气相色谱仪1纸张表面匀度及墨斑分析系统1电脑柔软度仪1切割式研磨仪1转子粘度计1顶空气相色谱仪1三离子束切割仪1浊度仪1动态滤水分析仪1扫描电镜1紫外-可见分光光度计1华南理工大学发光材料与器件国家重点实验室仪器类型型号种类仪器类型型号种类仪器类型型号种类超纯水系统2QE-R太阳能电池光谱响应量测系统1凝胶渗透色谱仪1探测器光谱响应度测试系统1纳秒瞬态吸收光谱系统1高温凝胶渗透色谱仪1光致发光量子效率测试系统1瞬态荧光光谱测试系统1扫描隧道显微镜1电致发光效率及分布角测试系统1开尔文探针台1热重分析仪1高纯水系统1台阶仪1差示扫描量热仪1小型等离子清洗机1分光辐射度计1高分辨超导核磁共振谱仪1150W太阳光模拟器1光刻机1液相色谱质谱联用仪1纯水系统1X射线衍射仪1离子淌度高清质谱仪1手套箱蒸镀系统1多靶磁控溅射镀膜机1单晶X射线衍射仪1探针式表面轮廓仪1原子力显微镜1小角X射线散射仪1紫外可见分光光度计1荧光光谱仪1微波反射光电测试系统设备1飞秒光学参量振荡装置1紫外-可见光-近红外分光光度仪1电子顺磁共振(EPR)波谱仪1阻抗分析仪1圆偏振荧光光谱仪1有机真空沉积系统1瞬态荧光光谱仪1高效液相色谱仪1激光分子束外延系统1山东大学晶体材料国家重点实验室仪器类型型号种类仪器类型型号种类仪器类型型号种类X射线单晶衍射仪1场发射高分辨透射电镜1热机械分析仪1X射线光电子能谱仪1多功能X射线衍射仪1热重/差热分析仪1X射线荧光光谱仪1傅立叶变换红外-拉曼光谱仪1扫描电子显微镜1半导体测试仪1高分辩X射线衍射仪1扫描探针显微镜1波导棱镜耦合仪1激光热导仪1荧光分光光度计1差热扫描量热仪1全自动高精度折射率测量仪1紫外可见分光光度计1以上为16大材料领域国家重点实验室的仪器配置清单。另外,中山大学光电材料与国家重点实验室、上海交通大学金属复合材料国家重点实验室、西北工业大学凝固技术国家重点实验室、四川大学高分子材料工程国家重点实验室、中科院上海微系统与信息技术研究所信息功能材料国家重点实验室这个5个材料领域国家重点实验室的仪器配置清单在公开平台无法查询,仪器信息网也将进一步关注各国家重点实验室接下来的动态。
  • 预算1.8亿!合肥研究院2022年仪器采购意向汇总
    为优化政府采购营商环境,提升采购绩效,《财政部关于开展政府采购意向公开工作的通知》(财库〔2020〕10号)等有关规定要求各预算单位按采购项目公开采购意向,内容应包括采购项目名称、采购需求概况、预算金额、预计采购时间等。近两年来,各大高校、科研院所等纷纷在相关平台公布本单位政府采购意向。中国科学院合肥物质科学研究院(以下简称合肥研究院)是中国科学院所属最大的综合性科研机构之一,由安光所、等离子体所、固体所、智能所、强磁场中心、核能安全所、健康所7个研究单元组成。与地方政府共建了6个成果转化平台,拥有30多个国家或省部级重点实验室和研究中心,以及10多个大型实验平台。合肥研究院的科研方向包括等离子体物理、磁约束核聚变工程、大气环境光学遥感、激光与光电子科学技术、强磁场科学与技术、环境科学与工程、先进核能、生物物理、转化医学、先进诊疗技术、材料科学与工程、人工智能与机器人、智慧农业技术等,并取得了诸多重大科研成果。 成果的产出和人才的培养都离不开仪器的支持,合肥研究院每年都会投入一定的经费采购科学仪器,以建立具有国际先进水平的实验研究和测试平台。为方便仪器信息网用户及时了解仪器采购信息,本文特对合肥研究院2022年仪器设备类政府采购意向进行了整理汇总。共收集到42个采购项目,预算金额相加达1.8亿元,采购品目涉及X射线光电子能谱仪、傅里叶红外光谱仪、电子束曝光系统、高分辨红外热成像仪等多种仪器类型。中国科学院合肥物质科学研究院2022年政府采购意向汇总表序号采购项目名称预算金额(万元)采购日期项目详情1傅里叶红外光谱仪1504月详情链接2低温强磁场光学探测平台2004月详情链接3真空压力浸渍用混胶脱气设备1504月详情链接4X射线光电子能谱仪2404月详情链接5CRAFT-NNBI多驱动射频负离子源等离子体发生器3004月详情链接6CRAFT-NNBI超高静电耐压测试平台1504月详情链接71064nm大功率激光器1434月详情链接8BES光谱诊断系统集成开发1754月详情链接9大功率射频功率源5204月详情链接10大功率高压假负载1504月详情链接11低温泵组6084月详情链接12NNBI低温冷却系统18004月详情链接13多通道超声波高温流体测量系统2504月详情链接14高分辨红外热成像仪1804月详情链接153D显微断层扫描仪6004月详情链接16数字射线检测系统1654月详情链接17250W/1.8K制冷机冷箱20004月详情链接18氦常温减压泵2004月详情链接19螺杆压缩机20554月详情链接20透平膨胀机5874月详情链接21氦循环泵3204月详情链接22水路流量压力测试集成设备2904月详情链接23低温恒温器1204月详情链接24光谱仪1604月详情链接25激光光源1404月详情链接26高精度长焦光栅光谱仪1184月详情链接27无液氦综合物性测量系统3504月详情链接28AJA PVD3404月详情链接29快速高分辨组织细胞三维扫描仪1504月详情链接30超高温激光导热仪2304月详情链接31新一代测序系统1405月详情链接32电感耦合等离子体质谱仪2285月详情链接33激光剥蚀系统2005月详情链接34低温脉冲电子顺磁共振波谱仪4905月详情链接35电子束曝光系统10005月详情链接36裂变电离室中子探测器试制1205月详情链接371.5MW 高功率宽频发射机18895月详情链接38跨温区结构万能试验机4005月详情链接3920kA超导样品电源2005月详情链接40氦进出口自动焊机2005月详情链接41tension link 自动焊机1505月详情链接42真空获得及其应用设备2605月详情链接
  • 中国科学技术大学理化科学实验中心热分析与吸附组在用设备简介
    p  strong本文转载自微信公众号热分析与吸附,作者为中国科学技术大学丁延伟老师,并已获转载授权。/strong/pp  目前热分析与吸附组在用的分析仪器主要包括热分析仪、吸附仪和粒度粒形分析仪,这些仪器与常规的结构和成分分析仪器不同,主要侧重于材料的性质表征。热分析仪是在程序控温和一定气氛下测量材料的物理性质(主要包括质量、热量、尺寸、电学性质、光学性质、磁学性质等)随温度或时间连续变化关系的一大类仪器,而吸附仪则通过测量材料在不同条件下(主要指压力、浓度、温度、时间等)对于某种或某几种气体的吸附能力来获得材料的结构、性质等方面的信息的一类仪器,主要分为物理吸附仪和化学吸附仪两大类,粒度粒形分析系统可以得到材料的粒径分布、粒形和Zeta电位等信息。和以下将分类进行介绍。br//pp style="text-align: center "  strongI热分析仪/strong/pp  a href="https://www.instrument.com.cn/zc/62.html" target="_self"strong1.热重仪/strong/a/pp  热重仪(Thermogravimeter),是一种利用热重法检测物质温度-质量变化关系的仪器。按其结构形式可以分为下皿式(即吊篮式)、上皿式和水平式三大类。目前的商品化仪器中,上皿式和水平式结构的热重仪通常与差热分析和差示扫描量热技术联用,通常称为同步热分析仪(SimultaneousThermal Analyzer)。下皿式结构的仪器通常为单一的热重仪。在用的热重仪主要有日本岛津公司TGA-50H热重仪(图1)、美国TA公司Q5000IRTGA热重仪(图2)、美国TA公司DiscoveryTGA热重仪(图3)和德国Netzsch公司TGA209F1四台仪器。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/7cc54975-2e83-4193-afbe-9362093fddab.jpg" title="图1 Shimadzu TGA-50H热重仪.png" alt="图1 Shimadzu TGA-50H热重仪.png"//pp style="text-align: center "图1 Shimadzu TGA-50H热重仪br//pp style="text-align: center "img src="https://img1.17img.cn/17img/images/202006/uepic/60fcd219-634a-4501-b236-0c8383beb3f5.jpg" title="图2 TA Q5000IR TGA热重仪.png" alt="图2 TA Q5000IR TGA热重仪.png" style="max-width: 100% max-height: 100% "//pp style="text-align: center "图2 TA Q5000IR TGA热重仪  /pp style="text-align: center "a href="https://www.instrument.com.cn/netshow/C259642.htm" target="_self"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/3cc6fee1-5c9e-42d8-b072-1cf2aa19198b.jpg" title="图3 TA Discovery TGA热重仪.png" alt="图3 TA Discovery TGA热重仪.png"//a/pp style="text-align: center "a href="https://www.instrument.com.cn/netshow/C259642.htm" target="_self"图3 TA Discovery TGA热重仪/a  /pp style="text-align: center "a href="https://www.instrument.com.cn/netshow/C143328.htm" target="_self"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/62aaf285-e5ee-4ded-9d8f-68c63487286c.jpg" title="图4 德国Netzsch公司TGA209F1热重仪.png" alt="图4 德国Netzsch公司TGA209F1热重仪.png"//a/pp style="text-align: center "a href="https://www.instrument.com.cn/netshow/C143328.htm" target="_self"图4 德国Netzsch公司TGA209F1热重仪/a/pp  其中,TGA-50H热重仪购于1993年,经过多次的加热炉、热电偶、吊篮以及软件的升级改造,这台仪器至今各项指标都可以满足检测要求。目前该仪器主要用于完成一些特殊条件下(主要指耗时特别长、水蒸气、还原气氛等可能会对仪器带来潜在损害的实验)的热重实验。美国TA公司的Q5000IRTGA和DiscoveryTGA可以实现温度调制(MTTGA)和速率超解析(HRTGA)实验。德国Netzsch公司TGA209F1带有200位自动进样器,可以实现真空条件下的TG实验。Q5000IR TGA和DiscoveryTGA主要用于常规测试,这两台仪器均带有25位自动进样器,可以高效率地完成各种常规测试需求。另外,由于其红外加热的优势,可以实现快速的升降温和准确的等温,可以用来研究高加热速率和等温下的热解行为。/pp  a href="https://www.instrument.com.cn/zc/469.html" target="_self"strong2.同步热分析仪/strong/a/pp  同步热分析仪是在程序控温和一定气氛下,对一个试样同时采用两种或多种热分析技术,是一种常见的热分析技术。通常特指热重-差热分析仪或热重-差示扫描量热仪。在用的热重仪主要有日本岛津公司DTG-60H热重-差热分析仪(图5)、美国TA公司SDTQ600热重-差热分析仪(图6)、美国PE公司STA-6000同步热分析仪(图7)、美国PE公司STA-8000同步热分析仪(图8)和德国耐驰公司STA449F3同步热分析仪(图9)。这五台仪器中除STA-8000最高温度为1000℃外,其余四台仪器的最高温度均为1500℃。其中,STA-6000和STA449F3带有自动进样器,可以高效率地完成各种常规测试需求。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/9bf825ec-6e41-4322-a420-e5f38d3601ee.jpg" title="图5 Shimadzu DTG-60H热重-差热分析仪.png" alt="图5 Shimadzu DTG-60H热重-差热分析仪.png"//pp style="text-align: center "图5 Shimadzu DTG-60H热重-差热分析仪br//pp style="text-align: center "img src="https://img1.17img.cn/17img/images/202006/uepic/2892e4a4-5470-4edf-a2fe-9dd437fd5c40.jpg" title="图6 TA SDT Q600热重-差热分析仪.png" alt="图6 TA SDT Q600热重-差热分析仪.png" style="text-align: center max-width: 100% max-height: 100% "//pp style="text-align: center "图6 TA SDT Q600热重-差热分析仪/pp style="text-align: center "a href="https://www.instrument.com.cn/netshow/C32191.htm" target="_self"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/97dabaf9-0bbb-4f90-afb6-2f726f88a4c9.jpg" title="图7 PerkinElmer STA-6000同步热分析仪.png" alt="图7 PerkinElmer STA-6000同步热分析仪.png"//a/pp style="text-align: center "a href="https://www.instrument.com.cn/netshow/C32191.htm" target="_self"图7 PerkinElmer STA-6000同步热分析仪/a/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/f7d5b2c6-6263-4064-a733-1ef18dbaa4d3.jpg" title="图8 PerkinElmer STA-8000同步热分析仪.png" alt="图8 PerkinElmer STA-8000同步热分析仪.png"//pp style="text-align: center "图8 PerkinElmer STA-8000同步热分析仪br//pp  /pp style="text-align: center "a href="https://www.instrument.com.cn/netshow/C53007.htm" target="_self"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/9831667e-4650-43cb-97bf-36dc8d2341dd.jpg" title="图9 Netzsch STA 449F3同步热分析仪.png" alt="图9 Netzsch STA 449F3同步热分析仪.png"//a/pp style="text-align: center "a href="https://www.instrument.com.cn/netshow/C53007.htm" target="_self"图9 Netzsch STA 449F3同步热分析仪/a/pp  a href="https://www.instrument.com.cn/zc/68.html" target="_self"strong3.热重/红外光谱/(气相色谱/质谱联用)联用仪/strong/a/pp  在用的两台热重/红外光谱/(气相色谱/质谱联用)联用仪(图10)分别购于2012年(热重部分为Pyris1TGA、红外光谱部分为Frontier红外光谱仪、GC为Clarus680、MS为ClarusSQ 8T)和2018年(热重部分为TGA8000、红外光谱部分为Frontier红外光谱仪、GC为Clarus690、MS为ClarusSQ 8T),主要用来研究材料随着温度的变化材料由于分解等引起的质量减少产生的气体的种类和含量的信息,是一种常用的联用技术。/pp style="text-align: center "a href="https://www.instrument.com.cn/netshow/C166944.htm" target="_self"img src="https://img1.17img.cn/17img/images/202006/uepic/66e27249-e41c-489f-aff5-843ec2e531a7.jpg" title="图10 PerkinElmer TL-9000热重-红外光谱-(气相色谱-质谱联用)联用仪.png" alt="图10 PerkinElmer TL-9000热重-红外光谱-(气相色谱-质谱联用)联用仪.png" style="max-width: 100% max-height: 100% "/br//a/pp style="text-align: center "a href="https://www.instrument.com.cn/netshow/C166944.htm" target="_self"图10 PerkinElmer TL-9000热重/红外光谱/(气相色谱/质谱联用)联用仪/a/pp  该仪器可以实现热重/红外光谱联用、热重/红外光谱/质谱联用、热重/红外光谱/(气相色谱/质谱联用)联用等实验,是研究材料的热解机理的一种很强大的分析手段。另外,这两套联用系统分别配置了捕集阱顶空(型号为TurboMatrix40 Trap)和热脱附(型号为TurboMatrix300)附件,通过切换,可以实现室温~300℃下的逸出气体的组成分析。/pp  a href="https://www.instrument.com.cn/zc/63.html" target="_self"strong4.差示扫描量热仪/strong/a/pp  差示扫描量热仪(differential scanning calorimeter,简称DSC仪)是在程序控温和一定气氛下,测量输给试样和参比物的热流速率或加热功率(差)与温度或时间关系的仪器。DSC仪通过测量试样端和参比端的热流速率或加热功率(差)随温度或时间的变化过程来获取试样在一定程序控制温度下的热效应信息。与DTA仪相比,DSC仪具有较高的灵敏度和精确度。常用的DSC仪主要有热流式和功率补偿式两种类型。在用的差示扫描量热仪主要有日本岛津公司DSC-60差示扫描量热仪(图11)、美国TA公司Q2000差示扫描量热仪(图12)、美国PE公司DSC8500差示扫描量热仪(图13)、美国TA公司MC-DSC多池差示扫描量热仪(图14)和德国耐驰公司DSC204F1差示扫描量热仪(图15)。其中DSC-60、Q2000、DSC204F1和MC-DSC属于热流型DSC仪,DSC8500属于功率补偿型DSC仪。除MC-DSC外,仪器的工作温度范围为-180℃-725℃(DSC8500的最高温度为750℃)。Q2000带有紫外光源,可以用来研究光照条件下的热效应的变化。Q2000和DSC8500还可以分别实现MTDSC和DynamicDSC的功能。另外,Q2000和DSC8500带有自动进样器,可以高效率地完成各种常规测试需求。与常规DSC不同,MC-DSC可以用来测量大尺寸样品(通常可以用来测试的样品的体积在1mL以上)的热效应,该仪器可以同时测量三个样品。但工作温度范围比较有限,在-40-150℃范围内。该仪器还可以用来测量高压、混合等条件下的热效应变化。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/85f4eb27-c25a-4c14-9101-0d2911440760.jpg" title="图11 Shimadzu DTG-60H热重-差热分析仪.png" alt="图11 Shimadzu DTG-60H热重-差热分析仪.png"//pp style="text-align: center "图11 Shimadzu DTG-60H热重-差热分析仪br//pp style="text-align: center "img src="https://img1.17img.cn/17img/images/202006/uepic/066e1243-684f-422e-b8fb-9ee60db94cfd.jpg" title="图12 TA Q2000 DSC 差示扫描量热仪.png" alt="图12 TA Q2000 DSC 差示扫描量热仪.png" style="max-width: 100% max-height: 100% "//pp style="text-align: center "图12 TA Q2000 DSC 差示扫描量热仪 a href="https://www.instrument.com.cn/netshow/C73752.htm" target="_self"img src="https://img1.17img.cn/17img/images/202006/uepic/2b5272a7-b5f4-448f-b74e-9cd33c5f9447.jpg" title="图13 Perkin Elmer DSC 8500 差示扫描量热仪.png" alt="图13 Perkin Elmer DSC 8500 差示扫描量热仪.png" style="max-width: 100% max-height: 100% "//a/pp style="text-align: center "a href="https://www.instrument.com.cn/netshow/C73752.htm" target="_self"图13 Perkin Elmer DSC 8500 差示扫描量热仪/abr//pp style="text-align: center "img src="https://img1.17img.cn/17img/images/202006/uepic/63c667fb-8897-4c0f-b75f-4b728311c955.jpg" title="图14 TA MC-DSC 差示扫描量热仪.png" alt="图14 TA MC-DSC 差示扫描量热仪.png" style="text-align: center max-width: 100% max-height: 100% "//pp style="text-align: center "图14 TA MC-DSC 差示扫描量热仪/pp style="text-align: center "a href="https://www.instrument.com.cn/netshow/C10143.htm" target="_self"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/30fa6369-9982-48be-bdb6-bf29b1f1f914.jpg" title="图15 Netzsch DSC 204F1差示扫描量热仪.png" alt="图15 Netzsch DSC 204F1差示扫描量热仪.png"//a/pp style="text-align: center "a href="https://www.instrument.com.cn/netshow/C10143.htm" target="_self"图15 Netzsch DSC 204F1差示扫描量热仪/abr//pp  strong5.微量差示扫描量热仪/strong/pp  与常规的DSC仪相比,微量差示扫描量热仪(microDSC)具有更高的灵敏度。其工作原理属于功率补偿型。我组在用的microDSC主要有美国Microcal公司(现已并入美国马尔文公司)的VP-DSC微量差示扫描量热仪(图16)和美国TA公司的NanoDSC微量差示扫描量热仪(图17)。由于该仪器的研究对象主要为大分子溶液体系,其工作温度范围为-5℃-130℃。与常规DSC实验中样品加入可移动的坩埚中不同,microDSC的样品池为固定池。实验时溶液通过进样器加入具有一定体积的固定池中,实验结束后再将待测溶液移除,然后清洗样品池。/pp style="text-align: center "a href="https://www.instrument.com.cn/netshow/C216024.htm" target="_self"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/4d2ed8ad-c2d8-470e-9794-3029a265cd3f.jpg" title="图16 Microcal VP-DSC微量差示扫描量热仪.png" alt="图16 Microcal VP-DSC微量差示扫描量热仪.png"//a/pp style="text-align: center "a href="https://www.instrument.com.cn/netshow/C216024.htm" target="_self"图16 Microcal VP-DSC微量差示扫描量热仪 /a /pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/5d86b323-37aa-4a09-903b-0e4c5912c60f.jpg" title="图17 TA Nano DSC微量差示扫描量热仪.png" alt="图17 TA Nano DSC微量差示扫描量热仪.png"//pp style="text-align: center "图17 TA Nano DSC微量差示扫描量热仪/pp  strong6.闪速差示扫描量热仪/strong/pp  闪速差示扫描量热仪(FlashDSC 2+)(图18)可以用来研究许多亚稳态材料如半结晶聚合物、多晶型材料、复合材料以及合金等的结构变化过程,可以实现常规的DSC无法实现的超高加热/降温速率下的实验。借助其UFS1传感器可以实现最高加热速率为3000000K/min(300万度每分钟)和最快加热速率为2400000K/min(即240万度每分钟)的超高温度扫描速率下的实验,实验温度范围为-100-1000℃。仪器采用嵌于陶瓷基体之上的微型芯片式传感器。该传感器基于MEMS 技术并且像常规DSC 一样拥有两个独立的量热组件(样品池及参比池)。两个量热组件所在的传感器主体由两个相同的正方形氮化硅薄膜构成。薄膜边长为1.6mm、厚度为2μm,嵌于300μm厚的硅框架内。用于闪速DSC 的典型样品为薄膜、块状材料或者粉末。块状材料在制样时首先从基体材料上切下一些小圆片。然后在显微镜下用刀片在传感器的附件将小圆片切成更小的小片。利用尖端带有一根细毛的专用毛笔将制备成的样品直接放置于传感器上。/pp style="text-align: center "a href="https://www.instrument.com.cn/netshow/C207263.htm" target="_self"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/79f58b82-4ab2-44d7-9216-fb9b56bdde39.jpg" title="图18闪速差示扫描量热仪(FlashDSC 2+).png" alt="图18闪速差示扫描量热仪(FlashDSC 2+).png"//a/pp style="text-align: center "a href="https://www.instrument.com.cn/netshow/C207263.htm" target="_self"图18 闪速差示扫描量热仪(FlashDSC 2+)/abr//pp  strong7.等温微量量热仪/strong/pp  在用的美国TA公司的TAMIV等温微量热仪(图19)是一种非常灵敏、稳定和灵活的微量热系统,能够直接测量所有的热信号、从而定量得到一个过程热力学和动力学信息。四个独立的量热通道可以在相同的实验条件下同时进行不同样品的实验,目前该仪器配置了等温滴定量热计、溶解热量热计、气体灌注量热计和六通道微瓦级量热计和纳瓦级量热计。可用于反应过程中向系统内添加反应试剂或是精确控制添加试剂的时间及用量。该系统可用来测量反应热,材料稳定性,材料寿命预测,工艺安全性评价,配方筛选等。通过等温滴定量热检测,可以对含有不同基团分子的两者液体材料在相互滴加时,根据产生测量产热情况,计算两种基团的结合情况,从而评估两者物质的相容情况 通过气体灌注/吸附热量检测,可以在一定温度下,得到材料对气体吸附过程的吸/放热测量 可以实现材料体与不同气氛(或湿度)作用下的吸/放热测量 通过溶解量热检测,可以在实际应用中,需要检测固体材料溶解到液体或者两者液体混合时所产生的溶解热。如含能材料溶解于水时的热量检测。通过纳瓦级量热计可以很容易实现此应用 通过多通道量热检测,可以在实际应用中用于同种样品材料的目标性筛选,极大地提高工作效率。/pp style="text-align: center "a href="https://www.instrument.com.cn/netshow/C243410.htm" target="_self"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/c4f50435-e361-4d77-8f17-b10c95be8972.jpg" title="图19 美国TA公司TAMIV等温微量热仪.png" alt="图19 美国TA公司TAMIV等温微量热仪.png"//a/pp style="text-align: center "a href="https://www.instrument.com.cn/netshow/C243410.htm" target="_self"图19 美国TA公司TAMIV等温微量热仪/abr//pp  strong8.等温滴定量热仪/strong/pp  等温滴定量热仪为生物分子结合的研究提供了最高的灵敏度和灵活性。仪器采用固态热电偶加热和冷却系统,实现了精确的温度控制,同时具有同样灵活性的注射器附件可确保准确有效地输送滴定剂。在用的美国TA公司的NanoITC等温滴定量热仪(图20)的工作温度范围为2℃~80℃,注射针筒体积为50µ L 和250µ L,检测热量范围是0.1µ J~5000µ J。/pp style="text-align: center "a href="https://www.instrument.com.cn/netshow/C33992.htm" target="_self"img src="https://img1.17img.cn/17img/images/202006/uepic/f44de75d-a260-4a1c-b0c1-3aff5dcf91a5.jpg" title="图20 美国TA公司的NanoITC等温滴定量热仪.png" alt="图20 美国TA公司的NanoITC等温滴定量热仪.png" style="max-width: 100% max-height: 100% "//a/pp style="text-align: center "a href="https://www.instrument.com.cn/netshow/C33992.htm" target="_self"图20 美国TA公司的NanoITC等温滴定量热仪/a/pp  a href="https://www.instrument.com.cn/zc/66.html" target="_self"strong9.热膨胀仪/strong/a/pp  热膨胀仪是在程序控温和一定气氛下,负载力接近于零的条件下测量材料的尺寸(通常为长度)随温度和时间变化关系的一类技术。可测量固体、熔融金属、粉末、涂料等各类样品,广泛应用于无机陶瓷、金属材料、塑胶聚合物、建筑材料、涂层材料、耐火材料、复合材料等领域。通过材料的尺寸变化可以测量与研究材料的线膨胀与收缩、玻璃化温度、致密化和烧结过程、热处理工艺优化、软化点检测、相转变过程、添加剂和原材料影响、反应动力学研究等方面的信息。在用的热膨胀仪为德国耐驰公司的DIL-402C热膨胀仪(图21),该仪器可以用来测量材料在室温-1600℃范围内的尺寸变化信息。 /pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/35f4cc01-6a98-4340-a275-1bf96127b13b.jpg" title="图21 Netzsch DIL-402C热膨胀仪.png" alt="图21 Netzsch DIL-402C热膨胀仪.png"//pp style="text-align: center "图21 Netzsch DIL-402C热膨胀仪/pp strong a href="https://www.instrument.com.cn/zc/65.html" target="_self"10.静态热机械分析仪/a/strong/pp  静态热机械分析仪(ThermalMechanical Analyzer,简称TMA仪)是在程序温度控制下(等速升温、降温、恒温或循环温度),测量物质在受非振荡性的负荷(如恒定负荷)时所产生的形变随温度变化的一种技术。热机械分析虽然涉及的材料对象非常广泛,包括金属、陶瓷、无机、有机等材料,但用它来研究高分子材料的玻璃化温度Tg、流动温度Tf、相转变点、杨氏模量、应力松弛等更具有特殊的意义。在用的热机械分析仪为美国TA公司的Q400TMA 热机械分析仪(图22),该仪器可以用来测量材料在-150-1000℃范围内的尺寸变化信息。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/d5b4ef1a-0f74-4262-909d-c4255d0aa8e7.jpg" title="图22 TA Q400 TMA热机械分析仪.png" alt="图22 TA Q400 TMA热机械分析仪.png"//pp style="text-align: center "图22 TA Q400 TMA热机械分析仪br//pp  a href="https://www.instrument.com.cn/zc/65.html" target="_self"strong11. 动态热机械分析仪/strong/a/pp  与TMA相比,动态热机械分析仪(DynamicMechanical Analyzer,简称DMA仪)是在程序温度控制下测量物质在承受振荡件负荷(如正弦负荷)时模量和力学阻尼随温度变化的一类仪器。它在测量分子结构单元的运动,特别在低温时比其他分析方法更为灵敏、更为有用。在用的DMA仪为美国TA公司DMAQ800动态热机械分析仪(图23)和DiscoveryDMA Q850动态热机械分析仪(图24)。该仪器可以用来研究材料在拉伸、压缩、单/双悬、三点弯曲、剪切条件下的动态受力下的形变,工作温度范围为-160~600℃。最大力为18N,频率范围0.001~200Hz。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/9d52c1f2-8b54-4933-bf5f-3a948bfe6abc.jpg" title="图23TA Q800 DMA热机械分析仪.png" alt="图23TA Q800 DMA热机械分析仪.png"//pp style="text-align: center "图23TA Q800 DMA热机械分析仪br//pp style="text-align: center "a href="https://www.instrument.com.cn/netshow/C290026.htm" target="_self"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/ca2ea5ba-9a29-4ff3-8766-fd29bb8c78d1.jpg" title="图24TA Discovery DMA 850热机械分析仪.png" alt="图24TA Discovery DMA 850热机械分析仪.png"//a/pp style="text-align: center "a href="https://www.instrument.com.cn/netshow/C290026.htm" target="_self"图24 TA Discovery DMA 850热机械分析仪/abr//pp  a href="https://www.instrument.com.cn/zc/84.html" target="_self"strong12.流变仪/strong/a/pp  流变仪(rheometer),即用于测定聚合物熔体、聚合物溶液、悬浮液、乳液、涂料、油墨和食品等流变性质的仪器。分为旋转流变仪、毛细管流变仪、转矩流变仪和界面流变仪。在用美国TA公司的DiscoveryDHR-2 流变仪(图25)属于旋转流变仪。通过改变不同的外界调节(如温度,压力,频率,应变,时间等)作用于材料,得到材料的回馈信号分析出其工艺过程和结构特性,研究材料或样品的性能(如零剪切粘度,凝胶点,固化点等等),计算材料的物理化学参数(如分子量,分子量分布,粘弹松弛谱,非线性行为,分子结构等)。流变仪测量时将样品置于特定的上下测量夹具之间,夹具的一端对样品施加一个力或变形,相应的传感器测量样品回馈对所施加的力或变形的响应,通过对该响应分析就得到样品粘弹性的总和特性曲线(如零剪切黏度,凝胶点,固化点等),计算样品的物理化学参数(如分子量,分子量分布,粘弹松弛谱,非线性行为,分子结构等)。流变仪的测试模式包括:流动(稳态测量)、振荡(动态测试)、蠕变和应力松弛(瞬态测量)等模式。/pp style="text-align: center "a href="https://www.instrument.com.cn/netshow/C140433.htm" target="_self"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/4d195ae8-9c9a-4152-af09-be48efbe3c42.jpg" title="图25 美国TA公司DiscoveryDHR-2 流变仪.png" alt="图25 美国TA公司DiscoveryDHR-2 流变仪.png"//a/pp style="text-align: center "a href="https://www.instrument.com.cn/netshow/C140433.htm" target="_self"图25 美国TA公司DiscoveryDHR-2 流变仪/abr//pp strong a href="https://www.instrument.com.cn/zc/530.html" target="_self"13.热流法导热仪/a/strong/pp  导热仪广泛应用于包括石墨、金属、陶瓷、聚合物、复合材料等领域,具有样品制备简易,测量速度快,测量精度高等众多优点。在用的热流法导热仪为德国耐驰公司的HFM446热流法导热仪(图26),平板温度范围:-20~90℃,可用于直接测量低导热与绝热材料的导热系数,如膨胀聚苯乙烯(EPS)、挤出聚苯乙烯(XPS)、PU坚硬泡沫、矿物棉、膨胀珍珠岩、泡沫玻璃、软木塞、羊毛、天然纤维材料,包含相变材料、气凝胶、混凝土、石膏或聚合物的建筑材料等。测试时将待测材料置于两块平板之间,平板间维持一定的温度梯度。通过平板上两个高精度的热流传感器,测量进入与穿出材料的热流。在系统达到平衡状态的情况下,热流功率为常数,在样品的测量面积与厚度已知的情况下,使用傅立叶传热方程可以计算导热系数。/pp style="text-align: center "a href="https://www.instrument.com.cn/netshow/C265677.htm" target="_self"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/bb1690a8-cac7-4943-b3b8-a2c41658a514.jpg" title="图26 德国耐驰公司HFM446热流法导热仪.png" alt="图26 德国耐驰公司HFM446热流法导热仪.png"//a/pp style="text-align: center "a href="https://www.instrument.com.cn/netshow/C265677.htm" target="_self"图26 德国耐驰公司HFM446热流法导热仪/abr//pp  a href="https://www.instrument.com.cn/zc/530.html" target="_self"strong14.激光导热仪/strong/a/pp  激光热导法直接测量的是材料的热扩散系数,其基本原理为:在炉体控制的一定温度下,由激光源发射光脉冲均匀照射在样品下表面,使试样均匀加热,通过红外检测器连续测量样品上表面相应温升过程,得到温度(检测器信号)升高和时间的关系曲线。应用计算机软件的数学模型对理论曲线和试验温度上升曲线进行计算修正,从而测出样品的热扩散系数,再测出比热已知的标样的热扩散系数,利用数学模型计算出样品的比热,系统根据计算公式自动计算出样品的导热系数。在用的德国耐驰公司的LFA467 HyperFlash 闪射法激光导热仪(图27),工作温度范围:-100~500℃,可在整个温度范围内连续测量16 个样品 德国耐驰公司的LFA467 HT HyperFlash 闪射法激光导热仪(图28),工作温度范围:室温~1250℃,这两款仪器都拥有极高的采样频率2MHz,特别适合于薄膜样品和高导热材料。 /pp style="text-align: center "a href="https://www.instrument.com.cn/netshow/C245188.htm" target="_self"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/5ef34d77-68dd-4c81-8f7f-00ebd4b8e95a.jpg" title="图27 德国耐驰公司LFA467 HyperFlash 闪射法激光导热仪.png" alt="图27 德国耐驰公司LFA467 HyperFlash 闪射法激光导热仪.png"//a/pp style="text-align: center "a href="https://www.instrument.com.cn/netshow/C245188.htm" target="_self"图27 德国耐驰公司LFA467 HyperFlash 闪射法激光导热仪 /a /pp style="text-align: center "a href="https://www.instrument.com.cn/netshow/C265759.htm" target="_self"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/3e96ba5b-542f-4218-b48a-3e3625c3ed0f.jpg" title="图28 德国耐驰公司LFA467HT HyperFlash 闪射法激光导热仪.png" alt="图28 德国耐驰公司LFA467HT HyperFlash 闪射法激光导热仪.png"//a/pp style="text-align: center "a href="https://www.instrument.com.cn/netshow/C265759.htm" target="_self"图28 德国耐驰公司LFA467HT HyperFlash 闪射法激光导热仪/a/ppbr//pp style="text-align: center "  strongII 吸附仪/strong/pp  在用的吸附仪主要有以下几种:/pp  strong15.物理吸附仪(比表面积介孔分析仪)/strong/pp  在用的比表面积和介孔分析仪为美国MicromeriticsTristar II 3020全自动比表面积和孔径分析仪(图29)。该仪器可同时实现三个样品的测试,得到的信息主要有吸脱附等温线、比表面积(包括BET比表面积、Langmuir比表面积等)、孔径分布(BJH、DFT等模型)、孔容积等信息。采用脱气站与分析站分离的工作模式。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/614b0dc7-11e4-4252-9812-9630ab61d87b.jpg" title="图29 美国MicromeriticsTristar II 3020全自动比表面积和孔径分析仪.png" alt="图29 美国MicromeriticsTristar II 3020全自动比表面积和孔径分析仪.png"//ppbr//pp style="text-align: center "图29 美国MicromeriticsTristar II 3020全自动比表面积和孔径分析仪/pp  strong16. 物理吸附仪(比表面积和微孔、介孔分析仪)/strong/pp  在用的比表面积和微孔、介孔分析仪为美国QuantachromeAutisorb iQ3M全自动气体吸附仪(图30)和美国Micromeritics2460全自动物理吸附仪(图31)。/pp  该仪器可同时实现三个样品的测试(可以同时进行两个微孔或三个介孔的分析),得到的信息主要有吸脱附等温线、比表面积(包括BET比表面积、Langmuir比表面积等)、孔径分布(HK、BJH、DFT等模型)、孔容积等信息。仪器同时带有4个脱气站和3个分析站。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/fc642a87-dad4-4e50-9127-7f5177ae6865.jpg" title="图30 Quantachrome Autisorb iQ3M全自动物理吸附仪.png" alt="图30 Quantachrome Autisorb iQ3M全自动物理吸附仪.png"//pp style="text-align: center "图30 Quantachrome Autisorb iQ3M全自动物理吸附仪br//pp style="text-align: center "img src="https://img1.17img.cn/17img/images/202006/uepic/50880f2e-b073-4094-8018-74727f86a979.jpg" title="图31 美国Micromeritics2460全自动物理吸附仪.png" alt="图31 美国Micromeritics2460全自动物理吸附仪.png" style="max-width: 100% max-height: 100% "/br//pp style="text-align: center "图31 美国Micromeritics2460全自动物理吸附仪/pp  strong17.物理化学吸附仪(比表面积、微孔、介孔和静态化学吸附分析仪)/strong/pp  在用的比表面积和微孔、介孔分析仪为美国MicromeriticsASAP 2020 M+C全自动微孔物理化学吸附仪(图32)。该仪器可以实现对材料的物理吸附(得到比表面积、孔径分布、孔容积等信息)和静态化学吸附实验。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/07938ed4-1570-479c-ad92-01e2921cd925.jpg" title="图32 美国MicromeriticsASAP 2020 M+C全自动微孔物理化学吸附仪.png" alt="图32 美国MicromeriticsASAP 2020 M+C全自动微孔物理化学吸附仪.png"//pp style="text-align: center "图32 美国MicromeriticsASAP 2020 M+C全自动微孔物理化学吸附仪br//pp  strong18.化学吸附仪(静态和动态化学吸附分析仪)/strong/pp  在用的美国QuantachromeAutosorb iQ3MVC全自动气体吸附仪(图33)除了可测比表面积、介孔、微孔等,还可以测量蒸汽吸附、静/动态化学吸附,全方位表征样品的催化特性。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/4367c8af-bc74-4539-b2a7-1f2200dabd17.jpg" title="图33 美国QuantachromeAutosorb IQ3MVC全自动气体吸附仪.png" alt="图33 美国QuantachromeAutosorb IQ3MVC全自动气体吸附仪.png"//pp style="text-align: center "图33 美国QuantachromeAutosorb IQ3MVC全自动气体吸附仪/pp  strong19.压汞仪/strong/pp  在用的压汞仪为美国康塔公司的PoreMaster60GT全自动压汞仪(图34),可同时分析2个高压样品。可用于介孔和大孔的总孔体积、孔体积分布、孔表面积及其分布测定,也可用于测定空心玻璃微珠的压碎强度和防水材料的水侵入研究。该仪器利用汞对材料不浸润的特性,采用人工加压的方式使汞进入材料内部孔隙,通过高精度压力传感器和标准体积膨胀计测量样品的注汞和退汞曲线,结合相关模型计算样品的孔径结构、孔隙度及真密度等参数。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/4e82d57e-86b9-49c2-a473-686d65fa88f7.jpg" title="图34 PoreMaster 60GT全自动压汞仪.png" alt="图34 PoreMaster 60GT全自动压汞仪.png"//pp style="text-align: center "图34 PoreMaster 60GT全自动压汞仪br//ppbr//pp style="text-align: center "strongIII 粒度粒形分析仪/strong/pp  目前,常用的颗粒粒度表征方法主要有筛分法、沉降法、电阻法、颗粒跟踪法、激光衍射法、动态光散射法、静态图像法、动态图像法等。其中,激光衍射法因为准确性高、重复性好、测试速度快、自动化程度高、大量成熟的测试方法标准,成为微米级颗粒粒度的主流方法。动态光散射法对于纳米级颗粒具有准确、快速、可重复性好等优点,还具有测量Zeta电位等能力,已经为纳米材料中非常常规的一种表征方法。动态图像法采样数据多、无取向误差、颗粒分散度高、无粘连重叠现象,在粒形分析方面得到了广泛应用,除了给出30多种颗粒的粒形参数,还能对测试颗粒的分散情况进行分析。在用的Microtrac粒度粒形测量系统可以实现颗粒以上的表征,该测量系统在催化剂、能源、环境、化工、金属粉体、工业矿物、陶瓷、玻璃珠、油气、涂料/颜料、制药、涂层、水泥、3D打印等领域中有着广泛的应用。颗粒的粒度和粒形与材料的性能密切相关,例如药品颗粒的粒度决定着人体的吸收程度,水泥颗粒的粒度决定了水泥的凝结时间,调色剂颗粒的球形度决定了其在打印材料上的粘附力等等。通过测量这些颗粒的粒度粒形参数(如粒径、球形度、长宽比、周长、面积等),可以优化材料的相关特性。该测量系统主要包括测量范围为0.01-4000µ m的Sync测量单元(图35)和测量范围为0.8nm-6.5µ m的NanoTrac测量单元(图36)。其中,Sync测量单元除可以实现粒度分布测量功能外,还可以得到粒形信息 NanoTrac测量单元除可以实现粒度分布测量功能外,还可以得到Zeta电位信息。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/b4fe743a-36c8-4df3-9ef2-dea228d3cac9.jpg" title="图35 Sync测量单元.png" alt="图35 Sync测量单元.png"//pp style="text-align: center "图35 Sync测量单元br//pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/7b0f6ad0-04c2-428a-bba6-87bb587dd984.jpg" title="图36 NanoTrac测量单元.png" alt="图36 NanoTrac测量单元.png"//pp style="text-align: center "图36 NanoTrac测量单元/pp  Sync测量单元由2个镜头、2块检测系统(共151个检测单元)和三个激光系统组成,可以实现高效、准确的颗粒度表征。其采用静态激光衍射技术测量微米级粒度,采用动态图像分析技术测量粒形数据,可以使用多于30种大小和形态的参数。仪器可以实现湿法和干法测量模式,满足多种样品的各种测量要求。由Sync的动态图像分析功能可以得到的散点图,由此可以得到不同尺寸范围的不同形状的颗粒的分布信息。NanoTrac测量系统采用采用先进的动态光背散射技术,180° 检测异相多普勒频率的变化,稳定性好、重现性高。采用电泳法技术测量Zeta电位数据。通过温控装置可以实现0-80℃范围内的粒度和Zeta电位测量。br//ppbr//p
  • 诚招德国Linseis热分析产品区域代理
    我司为了扩大业务与市场,在互惠互利的基础下,我们诚招全国各省区专业分销合作伙伴。 德国Linseis总部位于德国巴伐利亚州泽尔布(Selb),是一家有超过50年丰富专业经验的世界领先(热)分析仪器设备生产商,公司专门致力于研究、开发、生产热分析科学仪器,其产品的技术和质量方面一直处于业界领先地位。 热膨胀仪(DIL)赛贝克系数测定仪(SEEBECK)激光热扩散系数/导热系数分析系统(LFA/XFA) 热重分析系统 ( TGA) 差示扫描量热系统(DSC) 同步热分析仪系统(STA) 高温差示扫描量热仪(HDSC/DTA) 热机械分析仪(TMA) 近年来我公司代理的德国Linseis热分析产品得到市场的普遍认同。在全国各大院校、企业单位及研究中心都有我公司的产品。 我们热忱地欢迎您的来电来函!我们将根据您的需要,为您提供最为满意的专业售前、售后服务,以及技术支持和产品培训。 真诚期待与您携手共赢! 欢迎随时登陆我司主页网站www.linseis.com.cn 招商热线:021-50550642,50550643 联 系 人: 李小姐 邮  编: 201315 电子信箱: info@chanceint.com 公司地址: 上海市沪南路2653号2幢一层
  • 2022年热分析仪新品年中回顾:国产新品节节高
    据调研机构数据,2021年全球热分析仪器市场规模为4.8343亿美元,且市场规模在2021-2028年间以4.6%的年复合增长率增长,全球热分析仪器市场规模预计将于2028年达到约6.6434亿美元。近年来,各大热分析厂商纷纷在新品研发上加大了投入,仅2021年就上市了3台进口新品和11台国产新品,其中包括进口热分析仪厂商日本日立分析和法国凯璞科技-塞塔拉姆;国产厂商则包括天美、绵阳菲纳理、上海众路、南京汇诚、上海和晟、杭州仰仪、厦门海恩迈。纵观国内热分析新品上市情况,近两年,国产热分析仪新品上市数量出现明显多于进口产品的趋势。2022年全球热分析仪器市场规模约为5.0567亿美元,2022年上半年国内仅上市1款新品(据不完全统计),上市热分析新品为北京恒久的差示扫描量热仪HSC-4。2021年热分析上市新品回顾厂商名称2021年上市新品(点击查看详情)日立分析日立分析差示扫描量热仪DSC600&DSC200(上市时间:2021年1月)法国凯璞科技-塞塔拉姆法国塞塔拉姆 热重分析仪Setline TGA(上市时间:2021年10月)天美(原精科/上平)天美(原精科/上平)智能差示扫描量热仪 DSC30(上市时间:2021年7月)绵阳菲纳理绵阳菲纳理Calvet式3D微量热仪 UT310上海众路上海众路差示扫描量热仪(10.1寸工控机操作)DSC-500DS(上市时间:2021年6月)上海众路热重分析仪TGA1150A/1450A(上市时间:2021年5月)南京汇诚南京汇诚导热系数测试仪(高导专用)HCDR-SP(上市时间:2021年11月)上海和晟上海和晟热重分析仪HS-TGA-101(上市时间:2021年5月)上海和晟差示扫描量热仪HS-DSC-101(2021年4月)上海和晟差示扫描量热仪(半导体制冷)HS-DSC-101A(上市时间:2021年4月)杭州仰仪杭州仰仪电池等温量热BIC-400A(上市时间:2021年6月)厦门海恩迈厦门海恩迈芯片式热重分析仪以上热分析新品介绍可参见:《2021年热分析厂商仪器新品盘点:3台进口,11台国产》北京恒久2022年上市新品介绍: 北京恒久差示扫描量热仪HSC-4(上市时间:2022年1月)北京恒久实验设备有限公司始建于2000年,是一家以生产销售热分析仪器(差热分析仪、综合热分析仪、同步热分析仪、微机差热天平、微机差热仪、热重分析仪、微机热天平、差示扫描量热仪、氧化诱导期分析仪、微机卧式膨胀分析仪、高温高压热天平、大剂量热天平)(物化类仪器、催化剂评价装置、固定床评价装置)为主导,定制各种高压耐腐蚀类化工设备、流化床设备、实验室物化设备为一体的综合性高科技生产厂家。仪器新品创新点:外接光固化控制系统,可实现对单体、多体溶液在一定强度光线照射下快速完成固化的曲线测量。光源使用温度范围-100°C-200°C ,光源波长范围(315-500 nm),可以方便地通过控制软件进行设置触发。仪器新品介绍:1.热流式差示扫描量热仪重复性好、准确度高 ,特别适合于比热的精确测量。2.自主研发的气相色谱、质谱连接头、恒温带、恒温控制器,可充分保证焦油及各种反应气体的二次检测。3.完善的两路气氛控制系统,采用质量流量控制器;测量过程中,可以选择二路进气方式,软件设置自动切换。4.仪器配有标准物质,用户可自行进行各温度段的校正,减少仪器的误差。全程自动绘图,软件可实现各种数据处理,如热焓的计算、玻璃化转变温度、氧化诱导期、物质的熔点及结晶等等。5.大屏幕液晶显示,实时显示仪器的状态和数据,两套测温电偶,一套显示工作时样品温度,另一套电偶实时显示炉温。热分析仪器主要厂商简介:差示扫描量热仪(DSC/DTA):塞塔拉姆、北京恒久、众路、汇诚仪器、梅特勒托利多、大展、和晟、耐驰、TA 仪器、日立、林赛斯、珀金埃尔默、贝讴仪器、马尔文帕纳科、京仪高科、久滨仪器、理学、岛津、佳航仪器、依阳、柯锐欧、盈诺、天美、正瑞泰邦、德国林赛斯。热重分析仪/热天平(TGA):耐驰、塞塔拉姆、北京恒久、梅特勒托利多、德国林赛斯、众路、大展、京仪高科、汇诚仪器、TA 仪器、和晟、盈诺、珀金埃尔默、久滨仪器、力可、迈可威、佳航仪器、埃尔特、天美。同步热分析仪(STA):耐驰、日立分析仪器、塞塔拉姆、理学、众路、汇诚仪器、日立、京仪高科、和晟、珀金埃尔默、德国林赛斯、新科、久滨仪器、梅特勒托利多、TA 仪器、北京恒久、佳航仪器、盈诺、大展、贝讴仪器动态热机械分析仪(DMA/TMA/DMTA):耐驰、IMCE、日立、梅特勒托利多、麦特韦伯、TA 仪器、塞塔拉姆、珀金埃尔默、岛津、日立分析仪器、安东帕、林赛斯、德国林赛斯热膨胀仪:TA 仪器、德国林赛斯、柯锐欧、耐驰、依阳、京仪高科、Orton、北京恒久、林赛斯热分析联用仪:珀金埃尔默、耐驰、理学、北京恒久导热仪、热导仪:TA 仪器、耐驰、夏溪电子、林赛斯、Hot Disk、依阳、德国林赛斯、汇诚仪器、和晟、柯锐欧、大展、众路、京都电子、SEO、蓝姆达熔点仪:仪电物光、卓光、佳航仪器、海能、盈诺、本昂仪器、步琦、Standford、梅特勒托利多、天光、楚柏、SRS、Stuart、精拓仪器量热仪:菲纳理、赫伊尔、仰仪科技、三德、金铠仪器、马尔文帕纳科、耐驰、PARR、梅特勒托利多、民生星、DDS、塞塔拉姆
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制