FluorCam台式植物多光谱荧光成像系统
FluorCam台式植物多光谱荧光成像系统
FluorCam台式植物多光谱荧光成像系统
FluorCam台式植物多光谱荧光成像系统

¥20万 - 50万

暂无评分

捷克PSI

暂无样本

FluorCam台式植物多光谱荧光成像系统

--

欧洲

  • 金牌
  • 第15年
  • 一般经销商
  • 营业执照已审核
核心参数

PSI公司首席科学家Nedbal教授与公司总裁Trtilek博士等首次将PAM叶绿素荧光技术与CCD技术结合在一起,于1996年在世界上成功研制生产出FluorCam叶绿素荧光成像系统(Heck等,1999;Nedbal等,2000;Govindjee and Nedbal, 2000)。FluorCam叶绿素荧光成像技术成为上世纪90年代叶绿素荧光技术的重要突破,使科学家们对光合作用与叶绿素荧光的研究一下子进入二维世界和显微世界。目前PSI公司已成为世界上最权威、使用最广、种类最全面、发表论文最多的叶绿素荧光成像专业生产厂商。

图片339.jpg 

上左图为上世纪90年代Nedbal等设计的FluorCam叶绿素荧光成像技术(Photosynthesis Research, 66: 3-12, 2000),右图为柠檬彩色图及叶绿素荧光成像图(Photosynthetica, 38: 571-579, 2000)

FluorCam台式植物多光谱荧光成像系统是一款高度集成、高度创新、使用方便、应用广泛的高端植物活体成像技术设备,高灵敏度CCD镜头、4个固定的LED光源板及控制系统等集成于一个暗适应操作箱内(还可根据需求选配第五个光源板置于顶部),植物样品放置在暗适应操作箱内的隔板上,隔板7级高度可调;光源由高稳定性供电单元提供电源,4个高能、高稳定性LED光源板均一性照在植物样品上,成像面积可达13×13 cm;控制系统通过USB与计算机相联,并通过FluorCam软件程序控制和采集分析数据。适用于植物叶片及果实等其它植物组织、整株植物或培养的多株植物、苔藓地衣等低等植物、藻类等,广泛应用于植物包括藻类光合生理生态、植物逆境胁迫生理与易感性、气孔功能、植物环境如土壤重金属污染响应与生物检测、植物抗性检测与筛选、作物育种、Phenotyping等研究。

图片340.jpg 

主要功能特点:

· 系统集成于暗适应操作箱内,操作简便、便于移动,既可在实验室内也可在室外进行暗适应成像测量分析

· 高灵敏度CCD镜头,时间分辨率达50张每秒,快速捕捉叶绿素荧光瞬变,成像面积达13x13cm

· 是世界上唯一可进行OJIP快速荧光动力学成像分析的高端叶绿素荧光技术设备,可得到OJIP快速叶绿素荧光动态曲线及MoOJIP曲线初始斜率)、OJIP固定面积、Sm(对关闭所有光反应中心所需能量的量度)、QYPIPerformance Index)20多个参数

图片341.jpg 

· 是世界上唯一可进行QA再氧化动力学成像分析的高端叶绿素荧光技术设备,可运行单周转饱和光闪(STF)叶绿素荧光诱导动态,光强在100μs内可达到120,000 μmol(photons)/m2.s

· 具备功能最全的、可编辑的叶绿素荧光实验程序(Protocols),包括快照模式、Fv/Fm、Kautsky诱导效应、2个叶绿素荧光淬灭分析(NPQ)protocolas(2套定制给光方案)、LC光响应曲线、PAR吸收与NDVI成像分析、QA再氧化动力学分析(选配)、OJIP快速荧光动力学分析(选配)及GFP绿色荧光蛋白成像(选配)等

· 可进行自动重复成像测量分析,预设一个实验程序(Protocols)、测量次数及间隔,系统将自动循环运行成像测量,并自动将数据按时间日期存入计算机(带时间戳);还可预设两个实验程序(Protocols);比如使系统白天自动运行Fv/Fm,夜间自动运行NPQ分析等

· 具备双色光化学光激发光源,标准配置为红色和白色,可选配红色与蓝色等双波段光化学光,双色光化学光可按不同比例搭配使用,以便实验不同光质对作物/植物的光合效益

图片342.jpg

左图A为100%红色光源条件下黄瓜叶片的Fv/Fm,左图B为30%蓝色光源条件下黄瓜叶片的Fv/Fm;右上图为光合作用强度随光照强度(不同比例蓝色光)的关系,右下图为气孔导度随光照强度(不同比例蓝色光)的关系

· 可运行叶绿素荧光成像、多光谱荧光成像、GFP稳态荧光成像

· 可选配TetraCam彩色成像模块,最大成像面积20x25cm,用于叶片或植物形态成像分析和叶绿素荧光成像对比分析

· 可选配高光谱成像单元和红外热成像单元,植物性状数字化、可视化,全面测量分析植物形态、光合效率、生化性状、气孔导度、胁迫与抗性等

· 可选配大型版移动式植物成像分析系统,成像面积35x35cm,可运行叶绿素荧光成像、红外热成像及RGB成像分析

 图片343.jpg

最新应用案例:

Hendrik KupperZuzana Benedikty等,在20192月出版的《Plant Physiology》,发表了Analysis of OJIP Chlorophyll Fluorescence Kinetics and QA Reoxidation Kinetics by Direct Fast Imaging,该研究首次采用超高速成像传感器FluorCam台式植物叶绿素荧光成像系统与FKM多光谱显微荧光成像系统,成像速度可达4000fps@640x512QA再氧化叶绿素荧光动力学成像测量单脉冲饱和光闪达150,000 μmol/m2.s1

图片344.jpg 

 

附:OJIP快速荧光动力学测定分析参数包括:

a) Fo:初始荧光或称最小荧光,50μs时的荧光

b) Fj:2ms时的荧光

c) Fi:60ms时的荧光

d) P或Fm:最大荧光

e) Vj=(Fj-Fo)/(Fm-Fo):j阶荧光相对变量

f) Vi=(Fi-Fo)/(Fm-Fo):i阶荧光相对变量

g) Mo=TRo/RC-ETo/RC=4(F300-Fo)/(Fm-Fo):荧光瞬变初始斜率,或称OJIP曲线初始斜率

h) Area:OJIP曲线与Fm之间的面积,可称为补偿面积(complementary area)为了对不同样品进行比较,Area需要标准化为:Sm=Area/(Fm-Fo),Sm是对关闭所有光反应中心所需能量的量度

i) Fix Area:OJIP固定面积,OJIP曲线40微妙时的F值至1秒时的F值下面的面积

j) Sm:标准化OJIP补偿面积,反映QA还原多次周转

k) Ss=Vj/Mo:标准化OJ相补偿面积,反映单周转QA还原

l) N=Sm/Ss=Sm Mo(1/Vj):OJIP QA还原周转数量(between 0 and tFm

m) Phi_Po=QY=φpo=TRo/ABS=Fv/Fm,最大光量子产量,吸收光量子通量反应中心初始捕获比率

n) Psi_o=ψo=ETo/TRo=1-Vj,捕获光量子通量中电子传递光量子通量比率

o) Phi_Eo=φEo=ETo/ABS=(1-(Fo/Fm))(1-Vj),吸收光量子通量中电子传递光量子通量比率,或称电子传递光量子产量(quantum yield of electron transport at t=0

p) Phi_DoφDo1-φpo=Fo/Fm,能量散失光量子产量(t=0)

q) Phi_pav=φpav=φpo(Sm/tFm),平均光量子产量,tFm为达到Fm所需时间(ms)

r) ABS/RC=Mo(1/Vj)(1/QY):为单位反应中心的吸收光量子通量,这儿的反应中心仅指the active (QA to QA– reducing) centers(下同)。QY=TRo/ABS=Fv/Fm

s) TRo/RC=Mo(1/Vj):单位反应中心初始(或称最大)捕获光量子通量(导致QA的还原,也即反应中心关闭比率B的增加)

t) ETo/RC=Mo(1/Vj)(1-Vj):单位反应中心初始电子传递光量子通量

u) DIo/RC=(ABS/RC)-(TRo/RC):单位反应中心能量散失

v) ABS/CS:单位样品截面的吸收光量子通量,CS stands for the excited cross-section of the tested sample(下同)。ABS/CSoFoABS/CSmFmTRo/CSxQY(ABS/CSx)——单位截面捕获能量或光量子通量

w) TRo/CSoQY.FoETo/CSoφEo.Fo QY.(1-Vj).Fo

x) RC/CSx:反应中心密度,RC / CS0 (active RCs per excited cross-section)

y) PIABS(RC/ABS)(φpo/φDo)(ψo/Vj):基于吸收光量子通量的“性能”指数或称生存指数

z) PIcs(RC/CSx)(φpo/φDo)(ψo/Vj):基于截面的“性能”指数或称生存指数    

  • 当前土壤盐碱化严重,盐胁迫通过离子伤害、渗透伤害与糖分积累造成反馈抑制等途径影响光合作用,严重影响作物产量。近日,我公司(Eco-Lab实验室)就针对盐胁迫对水稻幼苗光合的影响检测开展了实验,结果表明盐胁迫降低了幼苗的光合效率,叶绿素荧光成像作为直接测量光合效率的有效手段,可以在胁迫早期灵敏检测盐胁迫下作物的光合生理状态,获得光合效率等数据的同时,获取二维图像,直观显示变化。

    农/林/牧/渔 2020-04-22

  • Fluorcam叶绿素荧光成像系统是植物与藻类光合生理研究利器,功能齐全,可快速、便捷地进行叶绿素荧光淬灭分析、快速光响应曲线测量、OJIP荧光诱导分析等,获取Fv/Fm、ΦPSⅡ等数十个光合效率相关参数及成像图,广泛应用于光合功能基因、逆境胁迫、藻类生态、经济藻类育种以及生物能源开发等研究领域。RF-O2是一种基于RED-FLASH光极传感器技术进行氧气含量测定的工作系统,具有实时、定量、无耗氧、高灵敏度的特点,1~4通道同时运行,应用于藻类、植物、动物等的代谢与生理研究。

    农/林/牧/渔 2020-05-18

  • 种子活力是种子发芽和出苗率、幼苗生长的潜势、植株抗逆能力和生产潜力的总和(发芽和出苗期间的活性水平与行为),是种子品质的重要指标,具体包括吸涨后旺盛的代谢强度、出苗能力、抗逆性、发芽速度及同步性、幼苗发育与产量潜力。 种子萌发实验无疑是最为直接有效的种子活力检测方法。但一般的传统方法需要人工计数来测量幼苗和计算发芽率,工作量极大,也非常耗时。而基于彩色图像分析来识别发芽幼苗又存在很大误差。 同时,传统的萌发幼苗形态数据如胚根、胚轴长度等很大程度上只能作为基础数据使用,难以直接评估幼苗生长的潜势、植株抗逆能力和生产潜力。因此,基于现代植物表型组学研究和种子活力评估要求,在种子萌发实验中还需要实时监测各种表型数据,而不仅仅是传统表型所说的形态数据。

    农/林/牧/渔 2021-01-18

  • 水稻生长过程中,易遭受各种非生物胁迫(如干旱、盐碱)与生物胁迫(稻瘟病、白叶枯病等),从而严重影响水稻生产。针对上述胁迫对水稻产生的影响进行精准可重复的表型分析是一项严峻挑战。植物吸收的光能主要用以进行光化学反应、热耗散及发出叶绿素荧光,三种途径互为竞争,此消彼长。胁迫可能引起植物光反应系统中的捕光复合体结构改变,光能的利用及分配变化,光合色素减少,相关代谢变化等,从而影响叶片的光学性质。叶绿素荧光技术可直接、无损测量光量子效率等光合生理参数并获取成像图,作为反映植物光合生理状态的重要量化指标,广泛应用于水稻研究的方方面面。

    农/林/牧/渔 2020-07-20

  • 当前土壤盐碱化严重,盐胁迫通过离子伤害、渗透伤害与糖分积累造成反馈抑制等途径影响光合作用,严重影响作物产量。近日,我公司(Eco-Lab实验室)就针对盐胁迫对水稻幼苗光合的影响检测开展了实验,结果表明盐胁迫降低了幼苗的光合效率,叶绿素荧光成像作为直接测量光合效率的有效手段,可以在胁迫早期灵敏检测盐胁迫下作物的光合生理状态,获得光合效率等数据的同时,获取二维图像,直观显示变化。

    农/林/牧/渔 2020-04-22

  • Fluorcam叶绿素荧光成像系统是植物与藻类光合生理研究利器,功能齐全,可快速、便捷地进行叶绿素荧光淬灭分析、快速光响应曲线测量、OJIP荧光诱导分析等,获取Fv/Fm、ΦPSⅡ等数十个光合效率相关参数及成像图,广泛应用于光合功能基因、逆境胁迫、藻类生态、经济藻类育种以及生物能源开发等研究领域。RF-O2是一种基于RED-FLASH光极传感器技术进行氧气含量测定的工作系统,具有实时、定量、无耗氧、高灵敏度的特点,1~4通道同时运行,应用于藻类、植物、动物等的代谢与生理研究。

    农/林/牧/渔 2020-05-18

  • 种子活力是种子发芽和出苗率、幼苗生长的潜势、植株抗逆能力和生产潜力的总和(发芽和出苗期间的活性水平与行为),是种子品质的重要指标,具体包括吸涨后旺盛的代谢强度、出苗能力、抗逆性、发芽速度及同步性、幼苗发育与产量潜力。 种子萌发实验无疑是最为直接有效的种子活力检测方法。但一般的传统方法需要人工计数来测量幼苗和计算发芽率,工作量极大,也非常耗时。而基于彩色图像分析来识别发芽幼苗又存在很大误差。 同时,传统的萌发幼苗形态数据如胚根、胚轴长度等很大程度上只能作为基础数据使用,难以直接评估幼苗生长的潜势、植株抗逆能力和生产潜力。因此,基于现代植物表型组学研究和种子活力评估要求,在种子萌发实验中还需要实时监测各种表型数据,而不仅仅是传统表型所说的形态数据。

    农/林/牧/渔 2021-01-18

  • 水稻生长过程中,易遭受各种非生物胁迫(如干旱、盐碱)与生物胁迫(稻瘟病、白叶枯病等),从而严重影响水稻生产。针对上述胁迫对水稻产生的影响进行精准可重复的表型分析是一项严峻挑战。植物吸收的光能主要用以进行光化学反应、热耗散及发出叶绿素荧光,三种途径互为竞争,此消彼长。胁迫可能引起植物光反应系统中的捕光复合体结构改变,光能的利用及分配变化,光合色素减少,相关代谢变化等,从而影响叶片的光学性质。叶绿素荧光技术可直接、无损测量光量子效率等光合生理参数并获取成像图,作为反映植物光合生理状态的重要量化指标,广泛应用于水稻研究的方方面面。

    农/林/牧/渔 2020-07-20

  • 茶叶起源于中国,时至今日依然是中国最重要的经济作物之一。使用FluorCam多光谱荧光成像系统对茶叶植株的光合特性与抗逆机制进行深入研究是非常有必要的。中国农科院茶叶研究所、青岛农业大学等单位都已经开展了相应的研究工作。详细内容可参见叶绿素荧光成像应用于茶树育种与生理分析。

    食品/农产品 2020-05-19

  • 浙江大学的研究人员使用了三种荧光技术——OJIP快速叶绿素荧光动力学技术、脉冲调制式叶绿素荧光成像技术和多光谱荧光成像技术获取了不同氮素处理下油菜不同生长时期以及不同叶位的荧光数据。通过对荧光信号数据的单因素方差分析和线性判别分析,阐明了不同氮素处理的油菜叶绿素荧光信号在不同生长时期的垂直分布状态,从而揭示最佳的氮素诊断叶位、时期与荧光信号获取技术。本研究首先在室内通过盆栽实验展开相关研究,最后进行了田间实验的验证,进而确保了结果的准确性与可重复性。

    食品/农产品 2020-11-04

  • 日前,北京易科泰生态技术有限公司为北京农林科学院林业果树研究所安装了一套封闭式FluorCam叶绿素荧光成像系统,该系统将为果树的栽培、遗传育种、种质评价、贮藏加工等研究提供强大助力。

    食品/农产品 2020-09-08

  • 叶绿素荧光成像技术是在通过叶绿素荧光测量技术检测各光合作用指标的同时,对样品进行二维成像,以图像的形式量化并显示整个观测目标的光合生理状态,能直观体现目标整体的光合异质性,测量目标涵盖叶绿体、单个细胞、微藻到叶片、果实、花朵,乃至整株植物。林果业是经济发展的重要条件之一,果实的产量、生理、品质等研究一直以来都是林果业研究的重点。叶绿素荧光成像技术在果实生理、品质等方面研究中具有广泛应用。

    食品/农产品 2021-01-15

  • 捷克全球变化研究所与丹麦哥本哈根大学长期合作研究开发一种环境毒性物质如除草剂、重金属等的高通量生物标记筛选方法。他们使用高等植物的光自养细胞悬液,结合FluorCam叶绿素荧光成像系统、FMT150藻类培养与在线监测系统、AlgaeTron AG230藻类培养箱等仪器开展了大量相关研究。实验结果表明光自养细胞悬液结合FluorCam叶绿素荧光成像技术就是一种非常好的环境毒性生物标记。

    环保 2020-05-19

  • 易科泰光谱成像创新应用研究室致力于生物活体荧光成像、高光谱成像、红外热成像创新应用实验研究与合作,特别是中医药与生态健康创新应用技术研究与发展,实现高通量、非接触、非损伤、可视化研究、检测、溯源。

    医疗/卫生 2021-08-09

用户评论
暂无评论
问商家

捷克PSI植物荧光成像FluorCam台式植物多光谱荧光成像系统的工作原理介绍

植物荧光成像FluorCam台式植物多光谱荧光成像系统的使用方法?

捷克PSIFluorCam台式植物多光谱荧光成像系统多少钱一台?

植物荧光成像FluorCam台式植物多光谱荧光成像系统可以检测什么?

植物荧光成像FluorCam台式植物多光谱荧光成像系统使用的注意事项?

捷克PSIFluorCam台式植物多光谱荧光成像系统的说明书有吗?

捷克PSI植物荧光成像FluorCam台式植物多光谱荧光成像系统的操作规程有吗?

捷克PSI植物荧光成像FluorCam台式植物多光谱荧光成像系统报价含票含运吗?

捷克PSIFluorCam台式植物多光谱荧光成像系统有现货吗?

FluorCam台式植物多光谱荧光成像系统信息由北京易科泰生态技术有限公司为您提供,如您想了解更多关于FluorCam台式植物多光谱荧光成像系统报价、型号、参数等信息,欢迎来电或留言咨询。
移动端

仪器信息网App

返回顶部
仪器对比

最多添加5台