视频号
视频号
抖音号
抖音号
哔哩哔哩号
哔哩哔哩号
app
前沿资讯手机看

我要投稿

投稿请发送邮件至:weidy@instrument.com.cn

邮件标题请备注:投稿

联系电话:010-51654077-8129

二维码

我要投稿

投稿请发送邮件至:weidy@instrument.com.cn

邮件标题请备注:投稿

联系电话:010-51654077-8129

阿尔托大学孙志培教授团队最新Science:超小型光谱仪

分享到微信朋友圈

打开微信,点击底部的“发现”,

使用“扫一扫”即可将网页分享到朋友圈。

分享: 2022/10/21 14:42:36
导读: 芬兰阿尔托大学孙志培院士团队和上海交通大学、浙江大学、四川大学、英国剑桥大学等教授团队合作开发了一种基于可调范德华异质结的高性能超微型光谱仪,尺寸仅为数微米。

      近日,芬兰阿尔托大学(Aalto University)孙志培院士团队和上海交通大学蔡伟伟教授团队,浙江大学杨宗银教授团队,四川大学崔汉骁教授团队,以及英国剑桥大学的Tawfique Hasan教授团队等合作开发了一种基于可调范德华异质结的高性能超微型光谱仪,尺寸仅为数微米。

通过学习该异质结在不同栅极电压下的光电流响应,结合先进的重构算法,研究人员在可见光和近红外波段突破性地实现了~0.36纳米的窄带光谱准确度,以及~3纳米的宽带光谱分辨率。该新型光谱仪不仅无需传统光谱仪中的光栅,光电探测器阵列等复杂器件和结构,还具有极高的准确度和分辨率。该工作不仅为高性能光谱仪的微型化提供了全新的思路,也为大规模片上光子系统集成,芯片实验室等先进技术实现了重要基础性突破。

相关研究成果于近日以题为“Miniaturized spectrometers with a tunable van der Waals junction”的研究论文形式在线发表于Science期刊。

计算光谱仪的性能取决于其波长依赖性光响应度的可变性。vdW结的界面带取向的电调谐(图1A)可实现可控和独特的层间传输。这种电可控的层间传输允许在宽光谱范围上具有高灵敏度和可变性的可调谐光谱响应(图1A)。作者将电可调谐的单vdW结与各种应用的计算重建算法相结合(图1B)。为了在实验上实现光谱仪概念,作者进行了以下三个步骤(图1):(i)使用多个已知入射光谱测量门可调谐光谱响应,(ii)测量待分析的未知入射光的门可调光电流,以及(iii)根据学习和测试过程中获得的结果,使用重构算法计算未知入射光的光谱信息。

图1 超小型化光谱仪概念

在不同的栅极电压和入射光波长下调谐对光谱仪至关重要。作者选择MoS 2/Se 2异质结(图2A)作为例子。MoS 2/Se 2异质结被顶部和底部的六方氮化硼(h-BN)层所封装,分别用于绝缘和钝化。堆叠层下面的单层石墨烯薄膜被用作局部栅极电极,用于有效的栅极调谐。MoS 2/Se 2通道及其异质结的传输曲线是在黑暗条件下漏源电压为3V时测量的(图2B)。MoS 2/Se 2异质结的 "反双极 "行为和其他传输特性是MoS 2/Se 2异质结的典型特征,提供了明显可区分的V GS依赖性。测量的MoS 2/Se 2异质结的传输曲线表明有很强的波长依赖性(图2c)。光谱响应矩阵(图2D)从跨越可调谐的MoS 2/Se 2异质结产生的光激发电荷载流子的动力学中继承了丰富的结构,证实了在MoS 2/Se 2异质结中具有快速和稳定的光谱检测与可调谐能力。在编码这个光谱响应矩阵(图2D)后,就可以通过测量未知入射光的门控可调谐光电流,然后计算其约束最小二乘解,以使用自适应吉洪诺夫正则化方法通过最小化具有正则化因子的残余范数来重建光谱。并证明了单结光谱仪概念的可行性(图2E和F)。

图2 单结光谱演示

在实际应用中,波长分辨能力是衡量光谱仪的一个重要标准。为了证明此单结超微型光谱仪的高光谱分辨率能力,作者通过一个超小的学习步骤(0.1纳米)构建一个高密度的光谱响应矩阵,使用波长为675至685纳米的单色光进行学习过程(图3A)。此单结光谱仪由高密度光谱响应矩阵编码,可以高精度地分辨单色光(图3,B和C)。重建光谱和参考光谱之间的平均峰值波长差(Δλ)为0.36±0.06纳米,最小为0.04纳米(图3D)。这与0.1 nm的学习步骤相当。在给定的输入波长λ下,平均波长分辨率是3470(图3D)。此外,作者测量复杂的入射光谱以研究光谱分辨率。成功区分了679 nm处相隔3 nm的两个峰(图3E)。为了说明单结光谱仪的未来发展可能性,作者还证明此方法具有改进的光响应性的潜力,可实现比商用小型化光谱仪更高的分辨率(图3F)。

图 3.高性能波长分辨功率和光谱分辨率

此单结光谱仪可以从最近开发的大规模2D材料合成中受益,以构建用于未来光谱成像的阵列。使用此光谱仪通过空间扫描演示了由红色、蓝色和透明区域组成的彩色滤光片的概念验证光谱成像(图4A)。在每个映射位置,测得不同V GS处的光电流数据一般事务记录在空间响应数据立方体中,用于光谱重建。在不同V GS下扫描的一系列光电流映射数据被显示出来(图4B)并转换为在不同波长下重建的一系列光谱数据(图4C)。在此演示中,图像分辨率由映射步骤定义。此概念在未来的阵列设备进行大规模光谱成像方面具有巨大的潜力,可以在微米或纳米尺度的结中提供高空间分辨率。

图 4. 光谱成像的概念验证演示

在此光谱仪中,无需光电探测器阵列、滤光片阵列或其他笨重的色散元件即可实现高分辨率、亚纳米级精度和宽工作带宽。作者的单结光谱仪占地面积小,可提供与当前光子集成电路和CMOS兼容工艺的可扩展性和兼容性,从而直接集成到现代智能手机、芯片实验室系统以及从生物植入物到无人机和卫星等其他定制设备中。

本文所报道的范德华异质结光谱仪,简化了传统光谱仪中为实现高性能所采用的复杂光电探测器阵列,滤波器阵列,以及其他复杂的分光、色散结构和元件,使光谱仪尺寸缩小到微米量级;利用异质结栅压可调光谱响应的特性及计算重构算法,实现了极高的光谱准确度和分辨率。该工作是一项重要的基础性突破,将为大规模片上光子系统集成,芯片实验室等先进技术的小型化提供高性能解决方案。


[来源:高分子科学前沿]

用户头像

作者:筱筱

总阅读量 38w+ 查看ta的文章

网友评论  0
为您推荐 精选资讯 最新资讯 新闻专题 更多推荐

版权与免责声明:

① 凡本网注明"来源:仪器信息网"的所有作品,版权均属于仪器信息网,未经本网授权不得转载、摘编或利用其它方式使用。已获本网授权的作品,应在授权范围内使用,并注明"来源:仪器信息网"。违者本网将追究相关法律责任。

② 本网凡注明"来源:xxx(非本网)"的作品,均转载自其它媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责,且不承担此类作品侵权行为的直接责任及连带责任。如其他媒体、网站或个人从本网下载使用,必须保留本网注明的"稿件来源",并自负版权等法律责任。

③ 如涉及作品内容、版权等问题,请在作品发表之日起两周内与本网联系,否则视为默认仪器信息网有权转载。

使用积分打赏TA的文章

到积分加油站,赚取更多积分

谢谢您的赞赏,您的鼓励是我前进的动力~

打赏失败了~

评论成功+4积分

评论成功,积分获取达到限制

收藏成功
取消收藏成功
点赞成功
取消点赞成功

投票成功~

投票失败了~